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Abstract

We introduce next what would appear to be the best parameterization of a piecewise smooth curve,

i.e., a parameterization by arc length. We will then use this parameterization to de�ne the integral of a

function whose domain is the curve.

We introduce next what would appear to be the best parameterization of a piecewise smooth curve, i.e.,
a parameterization by arc length. We will then use this parameterization to de�ne the integral of a function
whose domain is the curve.

Theorem 1:

Let C be a piecewise smooth curve of �nite length L joining two distinct points z1 to z2. Then
there exists a parameterization γ : [0, L]→ C for which the arc length of the curve joining γ (t) to
γ (u) is equal to |u− t| for all t < u ∈ [0, L] .
Proof:

Let φ : [a, b]→ C be a parameterization of C. De�ne a function F : [a, b]→ [0, L] by

F (t) =
∫ t

a

|φ' (s) | ds. (1)

In other words, F (t) is the length of the portion of C that joins the points z1 = φ (a) and
φ (t) . By the Fundamental Theorem of Calculus, we know that the function F is continuous on
the entire interval [a, b] and is continuously di�erentiable on every subinterval (ti−1, ti) of the
partition P determined by the piecewise smooth parameterization φ. Moreover, F ' (t) = |φ' (t) | > 0
for all t ∈ (ti−1, ti) , implying that F is strictly increasing on these subintervals. Therefore, if
we write si = F (ti) , then the si's form a partition of the interval [0, L] , and the function F :
(ti−1, ti)→ (si−1, si) is invertible, and its inverse F−1 is continuously di�erentiable. It follows then
that γ = φ ◦ F−1 : [0, L] → C is a parameterization of C. The arc length between the points γ (t)
and γ (u) is the arc length between φ

(
F−1 (t)

)
and φ

(
F−1 (u)

)
, and this is given by the formula∫ F−1(u)

F−1(t)
|φ' (s) | ds =

∫ F−1(u)

a
|φ' (s) | ds−

∫ F−1(t)

a
|φ' (s) | ds

= F
(
F−1 (u)

)
− F

(
F−1 (t)

)
= u− t,

(2)
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which completes the proof.

Corollary 1:

If γ is the parameterization by arc length of the preceding theorem, then, for all t ∈ (si−1, si) , we
have |γ' (s) | = 1.
Proof:

We just compute

|γ' (s) | = |
(
φ ◦ F−1

)' (s) |
= |φ'

(
F−1 (s)

) (
F−1

)' (s) |
= |φ'

(
F−1 (s) || 1

F '(F−1(s))
|

= |φ'
(
f−1 (s)

)
| 1
|φ'(f−1(s))|

= 1,

(3)

as desired.

We are now ready to make the �rst of our three de�nitions of integral over a curve. This �rst one is
pretty easy.

Suppose C is a piecewise smooth curve joining z1 to z2 of �nite length L, parameterized by arc length.
Recall that this means that there is a 1-1 function γ from the interval [0, L] onto C that satis�es the
condidition that the arc length betweenthe two points γ (t) and γ (s) is exactly the distance between the
points t and s.We can just identify the curve C with the interval [0, L] , and relative distances will correspond
perfectly. A partition of the curve C will correspond naturally to a partition of the interval [0, L] . A step
function on the dcurve will correspond in an obvious way to a step function on the interval [0, L] , and the
formula for the integral of a step function on the curve is analogous to what it is on the interval. Here are
the formal de�nitions:

De�nition 1:

Let C be a piecewise smooth curve of �nite length L joining distinct points, and let γ : [0, L]→ C
be a parameterization of C by arc length. By a partition of C we mean a set {z0, z1, ..., zn} of points
on C such that zj = γ (tj) for all j, where the points {t0 < t1 < ... < tn} form a partition of the
interval [0, L] . The portions of the curve between the points zj−1 and zj , i.e., the set γ (tj−1, tj) ,
are called the elements of the partition.

A step fucntion on C is a real-valued function h on C for which there exists a partition
{z0, z1, ..., zn} of C such that h (z) is a constant aj on the portion of the curve between zj−1

and zj .

Before de�ning the integral of a step function on a curve, we need to establish the usual consistency
result, encountered in the previous cases of integration on intervals and integration over geometric sets, the
proof of which this time we put in an exercise.

Exercise 1

Suppose h is a function on a piecewise smooth curve of �nite length L, and assume that there
exist two partitions {z0, z1, ..., zn} and {w0, w1, ..., wm} of C such that h (z) is a constant ak on the
portion of the curve between zk−1 and zk, and h (z) is a constant bj on the portion of the curve
between wj−1 and wj . Show that

n∑
k=1

akL (zk−1, zk) =
m∑
j=1

bjL (wj−1, wj) . (4)

HINT: Make use of the fact that h ◦ γ is a step function on the interval [0, L] .

http://cnx.org/content/m36228/1.2/
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Now we can make the de�nition of the integral of a step function on a curve.

De�nition 2:

Let h be a step function on a piecewise smooth curve C of �nite length L. The integral, with

respect to arc length of h over C is denoted by
∫
C
h (s) ds, and is de�ned by∫

C

h (s) ds =
n∑
j=1

ajL (zj−1, zj) , (5)

where {z0, z1, ..., zn} is a partition of C for which h (z) is the constant aj on the portion of C
between zj−1 and zj .

Of course, integrable functions on C with respect to arc length will be de�ned to be functions that are
uniform limits of step functions. Again, there is the consistency issue in the de�nition of the integral of an
integrable function.

Exercise 2

a. Suppose {hn} is a sequence of step functions on a piecewise smooth curve C of �nite length,
and assume that the sequence {hn} converges uniformly to a function f. Prove that the
sequence {

∫
C
hn (s) ds} is a convergent sequence of real numbers.

b. Suppose {hn} and {kn} are two sequences of step functions on a piecewise smooth curve C
of �nite length l, and that both sequences converge uniformly to the same function f. Prove
that

lim

∫
C

hn (s) ds = lim

∫
C

kn (s) ds. (6)

De�nition 3:

Let C be a piecewise smooth curve of �nite length L. A function f with domain C is called
integrable with respect to arc length on C if it is the uniform limit of step functions on C.

The integral with respect to arc length of an integrable function f on C is again denoted by∫
C
f (s) ds, and is de�ned by ∫

C

f (s) ds = lim

∫
C

hn (s) ds, (7)

where {hn} is a sequence of step functions that converges uniformly to f on C.

In a sense, we are simply identifying the curve C with the interval [0, L] by means of the 1-1 parameterizing
function γ. The next theorem makes this quite plain.

Theorem 2:

Let C be a piecewise smooth curve of �nite length L, and let γ be a parameterization of C by arc
length. If f is an integrable function on C, then∫

C

f (s) ds =
∫ L

0

f (γ (t)) dt. (8)

Proof:

First, if h is a step function on C, let {zj} be a partition of C for which h (z) is a constant aj on
the portion of the curve between zj−1 and zj . Let {tj} be the partition of [0, L] for which zj = γ (tj)
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for every j. Note that h ◦ γ is a step function on [0, L] , and that h ◦ γ (t) = aj for all t ∈ (tj−1, tj) .
Then, ∫

C
h (s) ds =

∑N
j=1 ajL (zj−1, zj)

=
∑n
j=1 ajL (γ (tj−1) , γ (tj))

=
∑n
j=1 aj (tj − tj−1)

=
∫ L
0
h ◦ γ (t) dt,

(9)

which proves the theorem for step functions.

Finally, if f = limhn is an integrable function on C, then the sequence {hn ◦ γ} converges uniformly to
f ◦ γ on [0, L] , and so ∫

C
f (s) ds = lim

∫
C
hn (s) ds

= lim
∫ L
0
hn (γ (t)) dt

=
∫ l
0
f (γ (t)) dt,

(10)

where the �nal equality follows from here1. Hence, Theorem 2, p. 3 is proved.
Although the basic de�nitions of integrable and integral, with respect to arc length, are made in terms of

the particular parameterization γ of the curve, for computational purposes we need to know how to evaluate
these integrals using di�erent parameterizations. Here is the result:

Theorem 3:

Let C be a piecewise smooth curve of �nite length L, and let φ : [a, b]→ C be a parameterization
of C. If f is an integrable function on C. Then∫

C

f (s) ds =
∫ b

a

f (φ (t)) |φ' (t) | dt. (11)

Proof:

Write γ : [0, L] → C for a parameterization of C by arc length. As in the proof to Theorem 2,
p. 3, we write g : [a, b] → [0, L] for γ−1 ◦ φ. Just as in that proof, we know that g is a piecewise
smooth function on the interval [a, b] . Hence, recalling that |γ' (t) | = 1 and g' (t) > 0 for all but a
�nite number of points, the following calculation is justi�ed:∫

C
f (s) ds =

∫ L
0
f (γ (t)) dt

=
∫ L
0
f (γ (t)) |γ' (t) | dt

=
∫ b
a
f (γ (g (u))) |γ' (g (u)) |g' (u) du

=
∫ b
a
f (γ (g (u))) |γ' (g (u)) ||g' (u) | du

=
∫ b
a
f (φ (u)) |γ' (g (u)) g' (u) | du

=
∫ b
a
f (φ (u)) |

(
'gamma ◦ g

)' (u) | du
=

∫ b
a
f (φ (u)) |φ' (u) | du,

(12)

as desired.

Exercise 3

Let C be the straight line joining the points (0, 1) and (1, 2) .
1"Integration, Average Behavior: Integrable Functions", Theorem 4

<http://cnx.org/content/m36209/latest/#fs-id1170767945547>
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a. Find the arc length parameterization γ :
[
0,
√

2
]
→ C.

b. Let f be the function on this curve given by f (x, y) = x2y. Compute
∫
C
f (s) ds.

c. Let f be the function on this curve that is de�ned by f (x, y) is the distance from (x, y) to
the point (0, 3) . Compute

∫
c
f (s) ds.

The �nal theorem of this section sums up the properties of integrals with respect to arc length. There are
no surprises here.

Theorem 4:

Let C be a piecewise smooth curve of �nite length L, and write I (C) for the set of all functions
that are integrable with respect to arc length on C. Then:

1. I (C) is a vector space ovr the real numbers, and∫
C

(af (s) + bg (s)) ds = a

∫
C

f (s) ds+ b

∫
C

g (s) ds (13)

for all f, g ∈ I (C) and all a, b ∈ R.
2. (Positivity) If f (z) ≥ 0 for all z ∈ C, then

∫
C
f (s) ds ≥ 0.

3. If f ∈ I (C) , then so is |f |, and |
∫
C
f (s) ds| ≤

∫
C
|f (s) | ds.

4. If f is the uniform limit of functions fn, each of which is in I (C) , then f ∈ I (C) and∫
C
f (s) ds = lim

∫
C
fn (s) ds.

5. Let {un} be a sequence of functions in I (C) , and suppose that for each n there is a numbermn,
for which |un (z) | ≤ mn for all z ∈ C, and such that the in�nite series

∑
mn converges. Then

the in�nite series
∑
un converges uniformly to an integrable function, and

∫
C

∑
un (s) ds =∑∫

C
un (s) ds.

Exercise 4

a. Prove the preceding theorem. Everything is easy if we compose all functions on C with the
parameterization γ, obtaining functions on [0, L] , and then use here2.

b. Suppose C is a piecewise smooth curve of �nite length joining z1 and z2. Show that the
integral with respect to arc length of a function f over C is the same whether we think of C
as being a curve from z1 to z2 or, the other way around, a curve from z2 to z1.

1:

REMARK Because of the result in part (b) of the preceding exercise, we speak of �integrating
over C� when we are integrating with respect to arc length. We do not speak of �integrating from
z1 to z2,� since the direction doesn't matter. This is in marked contrast to the next two kinds of
integrals over curves that we will discuss.

here is one �nal bit of notation. Often, the curves of interest to us are graphs of real-valued
functions. If g : [a, b] → R is a piecewise smooth function, then its graph C is a piecewise smooth
curve, and we write

∫
graph(g)

f (s) ds for the integral with respect to arc length of f over C =
graph (g) .

2"Integration, Average Behavior: Integrable Functions", Theorem 4
<http://cnx.org/content/m36209/latest/#fs-id1170767945547>
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