

 [image: Language Features, Primitive Types]

 Language Features, Primitive Types
By: Richard Baldwin
Online: <http://cnx.org/content/m37130/1.3/>
This module is copyrighted by Richard Baldwin.
It is licensed under the Creative Commons Attribution License: http://creativecommons.org/licenses/by/3.0/
Module revised: 2011/03/03

Language Features, Primitive Types
By: Richard Baldwin
Online: <http://cnx.org/content/m37130/1.3/>
This module is copyrighted by Richard Baldwin.
It is licensed under the Creative Commons Attribution License: http://creativecommons.org/licenses/by/3.0/
Module revised: 2011/03/03

Language Features, Primitive Types

1.
Table of Contents

 	

Preface

 	

General

	

Viewing tip

	

Supplemental material

	

	

Discussion

 	

Different types of data

	

Type specifications

	

Primitive types

	

Floating-point types

	

The boolean type

	

The char type

	

	

Resources

	

Miscellaneous

2.

Preface

General

This tutorial lesson is part of a series of lessons dedicated to the

AP Computer Science A Exam

.

The purpose of the series is to help you to better understand the

Java
Subset

 specifications for the

Advanced Placement Computer Science A

exam.

For example, if you access the

AP Computer Science Course Description

 and scroll down to Appendix A titled

AP Computer Science Java Subset

, you will find the following

specification

:

1. The primitive types int, double, and boolean are part of the AP Java subset.

The other primitive types short, long, byte, char, and float are not in the subset.

In particular, students need not be aware that strings are composed of char values. Introducing char does not increase the expressiveness of the subset.

Students already need to understand string concatenation, String.substring, and String.equals.
			

(This is a requirement in a different part of the

			

			

course description

.)

Not introducing char avoids complexities with the char/int conversions and confusion between "x" and 'x'.

(Note that I inserted some explanatory text in parentheses and also
	inserted some line breaks for clarity. Also note that this is the wording
	that appeared on the website on March 1, 2011. It may change over time.)

May be clear to some, but not to others

While some students and their homeschool parents may know exactly what is
meant by this text, others may not. Therefore, my objective will be to elaborate
on and attempt to clarify such specifications from a technical viewpoint to help
those students and their parents get a better understanding of where they need
to concentrate their efforts.

Viewing tip

 I recommend that you open another copy of this document in a separate
browser window and use the following links to easily find and view the figures
while you are reading about them.

 	

Figure 1

. Calculating the number of cans of paint to purchase.

	

Figure 2

. Value ranges for integer types.

	

Figure 3

. Representing a large range of values.

	

Figure 4

. Value range for floating-point types.

Supplemental material

 I recommend that you also study the other lessons in my extensive collection
of online programming tutorials. You will find a consolidated index at

www.DickBaldwin.com

.

3.

Discussion

Java, C++, C#, and some other modern programming languages make heavy use of a concept that we refer to as type, or data type. We refer to those languages as

strongly typed

 or

type-sensitive

 languages.

Not all languages are type-sensitive languages. In particular, some languages hide the concept of type from the programmer and automatically deal with type issues behind the scenes.

Different types of data

Type-sensitive programming languages deal explicitly with different types of data. Some data types involve
whole-numbers only

(no fractional parts are allowed)

. We generally refer to these as

integer

 types.

Other data types involve numbers with fractional parts. We generally refer to these types as

floating-point

 types, because a decimal point can float back and forth, separating the
whole-number part from the fractional part.

(After a while, we get lazy and refer to these simply as floating types.)

An example of integer and floating-point types

The scenario in Figure 1 illustrates integer and floating-point types.

	

	

Consider the problem of determining the number of cans of paint that must be purchased in order to paint all 15 tables in a restaurant.

						

The number of tables is an integer type. We don't want to paint 14.6 tables or 15.7 tables. We want to paint exactly 15 tables.
						

(We don't want to have a fractional part of a table left unpainted.)

						

We know that one can of paint will cover 3.6 tables. The number of tables that can be painted with one can of paint is a floating-point value because it contains a
						whole-number part and a fractional part.

						

A little arithmetic tells us that 4.167 cans of paint will be required to paint all 15 tables. This is also a floating-point value, because it has a
						whole-number part and a fractional part.

						

However, the man at the hardware store is unwilling to sell us 4.167 cans of paint. He requires us to specify the number of cans of paint as an integer value. In this case, we will need to purchase 5 cans of paint in order to have enough paint available to paint all 15 tables, with a little paint left over.
						

Figure 1.

Calculating the number of cans of paint to purchase.

Calculating the number of cans of paint to purchase.

Other types of data

Although all data in a computer is stored in numeric format, some data types conceptually have nothing to do with numeric values, but deal only with the concept of

true

 or

false

 or with the concept of the letters of the alphabet and the punctuation characters. I will have more to say about these types later.

Type specifications

For every different type of data used with a particular programming language, there is a specification somewhere that defines two important characteristics of the type:

 	
The set of all possible data values that can be stored in an instance of the type.
	

(We will learn more about the concept of an instance shortly.)

	
The operations that you can perform on that instance alone, or in
	combination with other instances.
	

(For example, operations include addition, subtraction, multiplication, division, etc.)
	

	

What do I mean by

instance

?

Think of the type specification as being analogous to the plan or blueprint for a model airplane. Assume that you build three model airplanes from the same set of plans. You will have created three

instances

 of the single set of plans.

We might say that an instance is the physical manifestation of a plan or a type.

An example, the

short

 data type

There is a data type in Java, C++, and C# known as

short

. If you have an instance of the short type in Java, the set of all possible values that you can store in that instance is the set of all
whole-numbers ranging from -32,768 to +32,767.

This constitutes a set of 65,536 different values, including the value zero.

No other value can be stored in an instance of the type

short

. For example, you cannot store the value 35,000 in an instance of the type

short

 in Java. If you need to store that value, you will have to use some type other than

short

.

Sort of like an odometer

The

short

 type is an integer type. Integer types are somewhat analogous to the odometer in your car

(the thing that records how many miles the car has been driven)

.

For example, depending on the make and model of car, there is a specified set of values that can appear in the odometer. The value that appears in the odometer depends on how many miles your car has been driven.

It is fairly common for an odometer to be able to store and to display the set of all positive values ranging from zero to 99,999.

If your odometer is designed to store that set of values and if you drive your car more than 99,999 miles, it is likely that the odometer will roll over and start back at zero after you pass the 99,999-mile mark. In other words, that particular type of odometer does not have the ability to store a value of 100,000 or more miles. Once you pass the 99,999 mark, the data stored in the odometer is corrupt. It no longer represents the true number of miles for which the car has been driven.

A word or two about operations

Assume that you have two instances of the type

short

 in a Java program. Here are some of the operations that you can perform on those instances:

 	
You can add them together.

	
You can subtract one from the other.

	
You can multiply one by the other.

	
You can divide one by the other.

	
You can compare one with the other to determine which is algebraically larger.

There are other operations that are allowed as well. In fact, there is a well defined set of operations that you are allowed to perform on those instances, and that set of operations is defined in the specification for the type

short

.

What if you want to do something different?

If you want to perform an operation that is not allowed by the type specification, then you will have to find another way to accomplish that purpose.

For example, some programming languages allow you to raise whole-number types to a power

(examples: four squared, six cubed, nine to the fourth power, etc.)

. However, that operation is not allowed by the Java specification for the type

short

. If you need to do that operation with a data value of the Java

short

 type, you must find another way to do it.

Two major categories of type

Java data types can be subdivided into two major categories:

 	
Primitive types

	
User-Defined

(class)

 types

The remainder of this lesson will deal with primitive types.

Primitive types

Java, C++, and C# are extensible programming languages.

This means that there is a core component to the language that is always available. Beyond this, individual programmers can extend the language to provide new capabilities.

The primitive types are the types that are part of the core language.

Four categories of primitive types

I am going to subdivide the topic of primitive types into four categories:

 	
Whole-number

(integer)

 types

	
Floating-point types

	
The boolean type

	
The character type

Purchasing applesauce and hamburger

For example, consider purchasing applesauce and hamburger. At the grocery store where I shop, I am allowed to purchase applesauce by the jar, only in whole-number or integer quantities.

For example, the grocer is happy to sell me one jar of applesauce and is even happier to sell me 36 jars of applesauce.

However, she would be very unhappy if I were to open a jar of applesauce in the store and attempt to purchase 6.3 jars of applesauce.

A count of the number of jars of applesauce that I purchase is somewhat analogous to the concept of whole-number data types in Java. Applesauce is not available in fractional parts of jars, at least not at the store where I purchase my groceries.

On the other hand, the grocer is perfectly willing to sell me 6.3 pounds of hamburger. This is somewhat analogous to floating-point data types in Java.

Therefore, if I were writing a program dealing with quantities of applesauce and hamburger, I might elect to use a
whole-number type

(such as the type

int

)

 to represent jars of applesauce and to use a floating-point type

(such as the type

double

)

 to represent pounds of hamburger.

Different whole-number types

Four different whole-number types are built into the Java language:

 	
byte

	
short

	
int

	
long

The four types differ primarily in terms of the range of values that they can
accommodate and the amount of computer memory required to store instances of the
types.

Although there are some subtle differences among these four types in terms of the operations that you can perform on them,
by

excluding

byte

,

short

, and

long

from the exam

(keeping only type

int

)

,
the authors of the exam have signaled that they don't require you to know about those differences.

Algebraically signed values

All four of these integer types can be used to represent algebraically signed values ranging from a specific negative value to a specific positive value.

Value ranges for the different integer types

The four integer types support the value ranges shown in Figure 2.

	

	

 	
byte: -128 to + 127

	
short: -32768 to + 32767

	
int: -2147483648 to +2147483647

	
long: -9223372036854775808 to +9223372036854775807

Figure 2.

Value ranges for integer types.

Value ranges for integer types.

Can represent some fairly large values

As you can see, the

int

 and

long

 types can represent some fairly large values. However, if your task involves calculations such as distances in interstellar space

(or the U.S. national debt)

, these ranges probably won't accommodate
your needs. This will lead you to consider using the floating-point types
discussed later.

Exclude types

byte

,

short

, and

long

As you saw

earlier

, the authors of the exam
have excluded types

byte

,

short

, and

long

 keeping only type

int

(of the whole-number
types)

 in the exam.

If only one whole-number type is to be included in the exam, type

int

 is the logical choice to keep. In many ways, it is the
default whole-number type in Java. For example, a literal value, such as 1279,
is considered to be type

 int

 unless you write code to force it
to be treated as some other type.

Floating-point types

Floating-point types are a little more complicated than whole-number types.
I found the following definition of floating-point in the

Free On-Line Dictionary of Computing

:

A number representation consisting of a mantissa, M, an exponent, E, and a radix (or "base"). The number represented is M*R^E where R is the radix.

What does this really mean?

I'm not going to get into a long discussion about floating-point values at
this point. If you are really interested, you will find a detailed discussion in
lesson # 905 at

http://www.dickbaldwin.com/tocint.htm

.

Advantages of floating-point types

One advantage of floating-point types is that they can be used to maintain fractional parts in data values.

Another advantage of floating-point types is that a very large range of values can be represented using a reasonably small amount of computer memory for storage of the values.

For example

(assuming that I counted the number of digits correctly)

 Figure
3 shows how to represent a very large value and a very small value as a floating-point type.

	

	

The very large value:

62357185000000000000000000000000000000.0

	

can be represented as

	

6.2357185E+37

	

The very small value:

	

0.0000000000000000000000000000062357185

	

can be represented as 6.2357185E-30

Figure 3.

Representing a large range of values.

Representing a large range of values.

When would you use floating-point?

If you happen to be working in an area where you need to keep track of fractional parts

(such as the amount of hamburger in a package)

, have to work with extremely large numbers

(distances between galaxies)

, or have to work with extremely small values

(the size of atomic particles)

, then you will need to use the floating-point types.

Also, if you will be doing computations involving division,
floating-point is often easier to work with because division with integer types
can be problematic.

(The remainder is discarded in integer division, which
can cause arithmetic accuracy problems.)

Two floating-point types

Java supports two different floating-point types:

 	
float

	
double

These two types differ primarily in terms of the range of values that they can support and the number of significant digits used in the representation of those values.

Figure 4 shows the smallest and largest values that can be accommodated by each of the floating-point types. Values of either type can be either positive or negative.

	

	

 	
float: 1.4E-45 to 3.4028235E38

	
double: 4.9E-324 to 1.7976931348623157E308

Figure 4.

Value range for floating-point types.

Value range for floating-point types.

Exclude type

float

As you saw

earlier

, the authors of the exam
have excluded type

float

 including only type

double

(of the two floating-point types)

 in the exam. If one of the
floating-point types is to be excluded, type

double

 is the
logical choice to keep. In many ways, it is the default floating-point type in
Java. For example, a literal value, such as 3.14159, is considered to be type

double

 unless you write code to force it to be treated as type

float

.

The boolean type

The

boolean

 type is the simplest type supported by Java. It can have only two values:

 	
true

	
false

Generally speaking, about the only operations that can be applied to an instance of the

boolean

 type are to change it from true to false, and vice versa. The boolean type is commonly used in some kind of a test to determine what to do next.

Keep type

boolean

As you saw

earlier

, the authors of the exam
have included type

boolean

 in the exam.

In this case, there was no opportunity to exclude other similar types. The

boolean

 type is one of a kind and you will need to know how to
use it when taking the exam.

The char type

As you saw

earlier

, the authors of the exam
elected not to include type

char

 in the exam, and they gave
several reasons why.

However, just in case you are curious about this type, I will provide some
information about it in the following paragraphs.

The character type

char

Computers deal only in numeric values. They don't know how to deal directly with the letters of the alphabet and punctuation characters.

The purpose of the character type

char

 is to make it possible to represent the letters of the alphabet, the punctuation characters, and the numeric characters internally in the computer. This is accomplished by assigning a numeric value to each character, much as you may have done to create secret codes when you were a child.

(For example, in Java an upper-case A character is represented by the numeric value 65, whereas the upper-case B is represented by the numeric value 66.)

A single character type

Java supports a single character type named

char

. The

char

type uses a standard character representation known as

Unicode

 to represent up to 65,535
different characters.

Why so many characters?

The reason for the large number of possible characters is to make it possible to represent the characters making up the alphabets of many different countries and many different languages.

Representing a character symbolically

Although each character is represented internally by a numeric value, as long as the characters that you use in your program appear on your keyboard, you usually don't have a need to know the numeric values associated with the different characters.

In Java, you usually represent a character to the program by surrounding it with apostrophes as follows: 'A'.

The Java programming tools know how to cross-reference that specific character symbol against the Unicode table to obtain the corresponding numeric value.

(A discussion of the use of the

char

 type to represent characters that don't appear on your keyboard is beyond the scope of this lesson.)

4.

Resources

I will publish a list containing links to resources in the following module
and will update and add to the list as the remaining modules in this collection
are published:

http://cnx.org/content/m37140/latest/

5.

Miscellaneous

This section contains a variety of miscellaneous materials.

Housekeeping material

 	
Module name: Java Subset, Primitive Types

	
File: Hs01004.htm

	
Keywords:

 	
Advanced placement

	
AP Computer Science

	
Java subset

	
homeschool

	

Disclaimers:

Financial

: Although the Connexions
site makes it possible for you to download a PDF file for this
module at no charge, and also makes it possible for you to
purchase a pre-printed version of the PDF file, you should be
aware that some of the HTML elements in this module may not translate well into
PDF. I also want you to know that, I receive no income from the Connexions website even if you purchase
	the PDF version of the module.

Affiliation

: I am a professor of Computer Information
	Technology at Austin Community College in Austin, TX, and have no
	affiliation with the
	

College Board

.
	

-end-

content/cover.png
Language
Features,
Primitive Types

