Connexions module: m37165

BASES AND FRAMES*

Marco F. Duarte Mark A. Davenport

This work is produced by The Connexions Project and licensed under the Creative Commons Attribution License †

Abstract

This module provides an overview of bases and frames in finite-dimensional Hilbert spaces.

A set $\Psi = \{\psi_i\}_{i \in \mathcal{I}}$ is called a basis for a finite-dimensional vector space¹ \mathcal{V} if the vectors in the set span \mathcal{V} and are linearly independent. This implies that each vector in the space can be represented as a linear combination of this (smaller, except in the trivial case) set of basis vectors in a unique fashion. Furthermore, the coefficients of this linear combination can be found by the inner product of the signal and a dual set of vectors. In discrete settings, we will only consider real finite-dimensional Hilbert spaces where $\mathcal{V} = \mathbb{R}^N$ and $\mathcal{I} = \{1, ..., N\}$.

Mathematically, any signal $x \in \mathbb{R}^N$ may be expressed as,

$$x = \sum_{i \in \mathcal{I}} a_i \tilde{\psi}_i,\tag{1}$$

where our coefficients are computed as $a_i = \langle x, \psi_i \rangle$ and $\{\tilde{\psi}_i\}_{i \in I}$ are the vectors that constitute our dual basis. Another way to denote our basis and its dual is by how they operate on x. Here, we call our dual basis $\tilde{\Psi}$ our synthesis basis (used to reconstruct our signal by (1)) and Ψ is our analysis basis.

An orthonormal basis (ONB) is defined as a set of vectors $\Psi = \{\psi_i\}_{i \in \mathcal{I}}$ that form a basis and whose elements are orthogonal and unit norm. In other words, $\langle \psi_i, \psi_j \rangle = 0$ if $i \neq j$ and one otherwise. In the case of an ONB, the synthesis basis is simply the Hermitian adjoint of analysis basis ($\tilde{\Psi} = \Psi^T$).

It is often useful to generalize the concept of a basis to allow for sets of possibly linearly dependent vectors, resulting in what is known as a frame. More formally, a frame is a set of vectors $\{\Psi_i\}_{i=1}^n$ in \mathbb{R}^d , d < n corresponding to a matrix $\Psi \in \mathbb{R}^{d \times n}$, such that for all vectors $x \in \mathbb{R}^d$,

$$A\|x\|_2^2 \le \|\Psi^T x\|_2^2 \le B\|x\|_2^2 \tag{2}$$

with $0 < A \le B < \infty$. Note that the condition A > 0 implies that the rows of Ψ must be linearly independent. When A is chosen as the largest possible value and B as the smallest for these inequalities to hold, then we call them the *(optimal)* frame bounds. If A and B can be chosen as A = B, then the frame is called A-tight, and if A = B = 1, then Ψ is a Parseval frame. A frame is called equal-norm, if there exists some $\lambda > 0$ such that $\|\Psi_i\|_2 = \lambda$ for all i = 1, ..., N, and it is unit-norm if $\lambda = 1$. Note also that while the concept of a frame is very general and can be defined in infinite-dimensional spaces, in the case where Ψ is a $d \times N$ matrix A and B simply correspond to the smallest and largest eigenvalues of $\Psi\Psi^T$, respectively.

^{*}Version 1.6: Sep 23, 2011 7:44 pm -0500

 $^{^\}dagger {\rm http://creative commons.org/licenses/by/3.0/}$

^{1&}quot;Introduction to vector spaces" http://cnx.org/content/m37167/latest/

Connexions module: m37165 2

Frames can provide richer representations of data due to their redundancy: for a given signal x, there exist infinitely many coefficient vectors α such that $x = \Psi \alpha$. In particular, each choice of a dual frame $\tilde{\Psi}$ provides a different choice of a coefficient vector α . More formally, any frame satisfying

$$\Psi \tilde{\Psi}^T = \tilde{\Psi} \Psi^T = I \tag{3}$$

is called an (alternate) dual frame. The particular choice $\tilde{\Psi} = (\Psi \Psi^T)^{-1} \Psi$ is referred to as the canonical dual frame. It is also known as the Moore-Penrose pseudoinverse. Note that since A>0 requires Ψ to have linearly independent rows, we ensure that $\Psi \Psi^T$ is invertible, so that $\tilde{\Psi}$ is well-defined. Thus, one way to obtain a set of feasible coefficients is via

$$\alpha_d = \Psi^T (\Psi \Psi^T)^{-1} x. \tag{4}$$

One can show that this sequence is the smallest coefficient sequence in ℓ_2 norm, i.e., $\|\alpha_d\|_2 \leq \|\alpha\|_2$ for all α such that $x = \Psi \alpha$.

Finally, note that in the sparse approximation² literature, it is also common for a basis or frame to be referred to as a dictionary or overcomplete dictionary respectively, with the dictionary elements being called atoms.

 $^{{\}rm ^2"Sparse\ representations"\ <} http://cnx.org/content/m37168/latest/>$