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Signal recovery in noise

Summary
This module establishes a number of results concerning various L1 minimization algorithms designed for sparse signal recovery from noisy measurements.  The results in this module apply to both bounded noise as well as Gaussian (or more generally, sub-Gaussian) noise.




 The ability to perfectly reconstruct a sparse signal from noise-free measurements represents a promising result. However, in most real-world systems the measurements are likely to be contaminated by some form of noise. For instance, in order to process data in a computer we must be able to represent it using a finite number of bits, and hence the measurements will typically be subject to quantization error. Moreover, systems which are implemented in physical hardware will be subject to a variety of different types of noise depending on the setting.
 Perhaps somewhat surprisingly, one can show that it is possible to modify
(1)

 to stably recover sparse signals under a variety of common noise models 2, 3, 4. As might be expected, the restricted isometry property (RIP) is extremely useful in establishing performance guarantees in noise.
 In our analysis we will make repeated use of Lemma 1 from "Noise-free signal recovery", so we repeat it here for convenience.
 Lemma 1.

        
Suppose that 
               Φ
             satisfies the RIP of order 2K
             with . Let  be given, and define . Let 
               Λ
               0
             denote the index set corresponding to the 
               K
             entries of 
               x
             with largest magnitude and 
               Λ
               1
             the index set corresponding to the 
               K
             entries of 
               h
               
                  Λ
                  0
                  
                     c
                  
               
             with largest magnitude. Set 
               Λ = Λ
               0∪Λ
               1
            . If , then
(2)

 where
(3)



  


1. Bounded noise



 We first provide a bound on the worst-case performance for uniformly bounded noise, as first investigated in 2.
 Theorem 1. (Theorem 1.2 of 1)

         
            
Suppose that 
                  Φ
                satisfies the RIP of order 2K
                with  and let 
                  y = Φ
                  x + e
                where ∥e∥2 ≤ ϵ
               . Then when , the solution  to Equation 1 obeys
(4)

 where
(5)



         Proof



 We are interested in bounding . Since ∥e∥2 ≤ ϵ
               , 
                  x ∈ B(y), and therefore we know that . Thus we may apply Lemma 1., and it remains to bound |〈Φ 
                  h
                  
                     Λ
                   , Φ 
                  h〉|. To do this, we observe that
(6)

 where the last inequality follows since . Combining this with the RIP and the Cauchy-Schwarz inequality we obtain
(7)

 Thus,
(8)

 completing the proof.


      


 In order to place this result in context, consider how we would recover a sparse vector 
            x
          if we happened to already know the 
            K
          locations of the nonzero coefficients, which we denote by 
            Λ
            0
         . This is referred to as the oracle estimator. In this case a natural approach is to reconstruct the signal using a simple pseudoinverse:
(9)

 The implicit assumption in Equation 9 is that 
            Φ
            
               Λ
               0
            
          has full column-rank (and hence we are considering the case where 
            Φ
            
               Λ
               0
            
          is the 
            M × K
          matrix with the columns indexed by 
            Λ
            0
            
               c
            
          removed) so that there is a unique solution to the equation 
            y = Φ
            
               Λ
               0
            
            x
            
               Λ
               0
            
         . With this choice, the recovery error is given by
(10)

 We now consider the worst-case bound for this error. Using standard properties of the singular value decomposition, it is straightforward to show that if 
            Φ
          satisfies the RIP of order 2K
          (with constant 
            δ
            2K
            
         ), then the largest singular value of 
            Φ
            †
            
               Λ
               0
            
          lies in the range . Thus, if we consider the worst-case recovery error over all 
            e
          such that ∥e∥2 ≤ ϵ
         , then the recovery error can be bounded by
(11)

 Therefore, if 
            x
          is exactly 
            K
         -sparse, then the guarantee for the pseudoinverse recovery method, which is given perfect knowledge of the true support of 
         
            x
         , cannot improve upon the bound in Theorem 1. (Theorem 1.2 of 1) by more than a constant value.
 We now examine a slightly different noise model. Whereas Theorem 1. (Theorem 1.2 of 1) assumed that the noise norm ∥e∥2
          was small, the theorem below analyzes a different recovery algorithm known as the Dantzig selector in the case where ∥Φ
            
               T
             
            e∥∞
          is small 3. We will see below that this will lead to a simple analysis of the performance of this algorithm in Gaussian noise.
 Theorem 2.

           
Suppose that 
                  Φ
                satisfies the RIP of order 2K
                with  and we obtain measurements of the form 
                  y = Φ
                  x + e
                where ∥Φ
                  
                     T
                   
                  e∥∞ ≤ λ
               . Then when , the solution  to Equation 1 obeys
(12)

 where
(13)



         Proof



 The proof mirrors that of Theorem 1. (Theorem 1.2 of 1). Since ∥Φ
                  
                     T
                   
                  e∥∞ ≤ λ
               , we again have that 
                  x ∈ B(y), so  and thus Lemma 1. applies. We follow a similar approach as in Theorem 1. (Theorem 1.2 of 1) to bound |〈Φ 
                  h
                  
                     Λ
                   , Φ 
                  h〉|. We first note that
(14)

 where the last inequality again follows since . Next, note that 
                  Φ
                  h
                  
                     Λ
                   = Φ
                  
                     Λ
                  
                  h
                  
                     Λ
                  
               . Using this we can apply the Cauchy-Schwarz inequality to obtain
(15)
          
            |〈Φ 
                  h
                  
                     Λ
                   , Φ 
                  h〉|
             = 
            |〈h
                  
                     Λ
                   , Φ
                  
                     Λ
                  
                  
                     T
                   
                  Φ 
                  h〉|
             ≤ 
            ∥h
                  
                     Λ
                  ∥2
            ∥Φ
                  
                     Λ
                  
                  
                     T
                   
                  Φ 
                  h∥2
            .
          
        
 Finally, since ∥Φ
                  
                     T
                   
                  Φ 
                  h∥∞ ≤ 2λ
               , we have that every coefficient of 
                  Φ
                  
                     T
                  
                  Φ
                  h
                is at most 2λ
               , and thus . Thus,
(16)

 as desired.


      



2. Gaussian noise



 Finally, we also examine the performance of these approaches in the presence of Gaussian noise. The case of Gaussian noise was first considered in 4, which examined the performance of 
            ℓ
            0
          minimization with noisy measurements. We now see that Theorem 1. (Theorem 1.2 of 1) and Theorem 2. can be leveraged to provide similar guarantees for 
            ℓ
            1
          minimization. To simplify our discussion we will restrict our attention to the case where 
            x ∈ Σ
            
               K
              = 
          {x  :  ∥x∥0  ≤  K} , so that 
            σ
            
               K
            (x)1 = 0 and the error bounds in Theorem 1. (Theorem 1.2 of 1) and Theorem 2. depend only on the noise 
            e
         .
 To begin, suppose that the coefficients of 
            e ∈ R
               M
            
          are i.i.d. according to a Gaussian distribution with mean zero and variance 
            σ
            2
         . Since the Gaussian distribution is itself sub-Gaussian, we can apply results such as Corollary 1 from "Concentration of measure for sub-Gaussian random variables" to show that there exists a constant 
            c
            0 > 0 such that for any 
            ϵ > 0,
(17)

 Applying this result to Theorem 1. (Theorem 1.2 of 1) with 
            ϵ = 1, we obtain the following result for the special case of Gaussian noise.
 Corollary 1.

           
Suppose that 
                  Φ
                satisfies the RIP of order 2K
                with . Furthermore, suppose that 
                  x ∈ Σ
                  
                     K
                  
                and that we obtain measurements of the form 
                  y = Φ
                  x + e
                where the entries of 
                  e
                are i.i.d. . Then when , the solution  to Equation 1 obeys
(18)

 with probability at least .


      


 We can similarly consider Theorem 2. in the context of Gaussian noise. If we assume that the columns of 
            Φ
          have unit norm, then each coefficient of 
            Φ
            
               T
            
            e
          is a Gaussian random variable with mean zero and variance 
            σ
            2
         . Using standard tail bounds for the Gaussian distribution (see Theorem 1 from "Sub-Gaussian random variables"), we have that
(19)
          
            P
            (|[Φ
            
               T
             
            e]
               i
            |  ≥  t 
            σ)
             ≤ 
            exp
            ( –  t
            2  /  2)
          
        
 for 
            i = 1,2,...,n
         . Thus, using the union bound over the bounds for different 
            i
         , we obtain
(20)

 Applying this to Theorem 2., we obtain the following result, which is a simplified version of Theorem 1.1 of 3.
 Corollary 2.

           
Suppose that 
                  Φ
                has unit-norm columns and satisfies the RIP of order 2K
                with . Furthermore, suppose that 
                  x ∈ Σ
                  
                     K
                  
                and that we obtain measurements of the form 
                  y = Φ
                  x + e
                where the entries of 
                  e
                are i.i.d. . Then when , the solution  to Equation 1 obeys
(21)

 with probability at least .


      


 Ignoring the precise constants and the probabilities with which the bounds hold (which we have made no effort to optimize), we observe that if 
            M = O(KlogN) then these results appear to be essentially the same. However, there is a subtle difference. Specifically, if 
            M
          and 
            N
          are fixed and we consider the effect of varying 
            K
         , we can see that Corollary 2. yields a bound that is adaptive to this change, providing a stronger guarantee when 
            K
          is small, whereas the bound in Corollary 1. does not improve as 
            K
          is reduced. Thus, while they provide very similar guarantees, there are certain circumstances where the Dantzig selector is preferable. See 3 for further discussion of the comparative advantages of these approaches.
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