
OpenStax-CNX module: m38431 1

Energy � Elastic and Inelastic

Collisions in Two Dimensions
∗

R.G. (Dick) Baldwin

This work is produced by OpenStax-CNX and licensed under the

Creative Commons Attribution License 3.0†

Abstract

This module explains elastic and inelastic collisions in two dimensions in a format that is accessible

to blind students.

1 Table of Contents

• Preface (p. 2)

· General (p. 2)
· Prerequisites (p. 2)
· Viewing tip (p. 2)

* Figures (p. 3)
* Listings (p. 3)

· Supplemental material (p. 3)

• Discussion (p. 3)
• Example scenarios (p. 7)

· One-dimensional scenarios (p. 7)

* The rear end car crash (p. 7)
* A perfectly inelastic car crash (p. 11)

· Two-dimensional scenarios (p. 14)

* Elastic collision between two pucks on friction-free ice (p. 15)
* Perfectly inelastic collision between objects with odd angles (p. 19)
* Rotating the axes for simpli�cation (p. 23)

• Run the scripts (p. 30)
• Resources (p. 30)
• Miscellaneous (p. 30)

∗Version 1.2: Oct 8, 2012 1:53 pm -0500
†http://creativecommons.org/licenses/by/3.0/

http://cnx.org/content/m38431/1.2/

OpenStax-CNX module: m38431 2

2 Preface

2.1 General

This module is part of a collection (see http://cnx.org/content/col11294/latest/ 1) of modules designed to
make physics concepts accessible to blind students. The collection is intended to supplement but not to
replace the textbook in an introductory course in high school or college physics.

This module explains elastic and inelastic collisions in two dimensions in a format that is accessible to
blind students.

2.2 Prerequisites

In addition to an Internet connection and a browser, you will need the following tools (as a minimum) to
work through the exercises in these modules:

• A graph board for plotting graphs and vector diagrams (http://www.youtube.com/watch?v=c8plj9UsJbg
2).

• A protractor for measuring angles (http://www.youtube.com/watch?v=v-F06HgiUpw 3).
• An audio screen reader that is compatible with your operating system, such as the NonVisual Desktop

Access program (NVDA), which is freely available at http://www.nvda-project.org/ 4 .
• A refreshable Braille display capable of providing a line by line tactile output of information displayed

on the computer monitor (http://www.userite.com/ecampus/lesson1/tools.php 5).
• A device to create Braille labels. Will be used to label graphs constructed on the graph board.

The minimum prerequisites for understanding the material in these modules include:

• A good understanding of algebra.
• An understanding of the use of a graph board for plotting graphs and vector diagrams (http://www.youtube.com/watch?v=c8plj9UsJbg

6).
• An understanding of the use of a protractor for measuring angles (http://www.youtube.com/watch?v=v-

F06HgiUpw 7).
• A basic understanding of the use of sine, cosine, and tangent from trigonometry (http://www.clarku.edu/∼djoyce/trig/

8).
• An introductory understanding of JavaScript programming (http://www.dickbaldwin.com/tocjscript1.htm

9 and http://www.w3schools.com/js/default.asp 10).
• An understanding of all of the material covered in the earlier modules in this collection.

2.3 Viewing tip

I recommend that you open another copy of this document in a separate browser window and use the
following links to easily �nd and view the �gures and listings while you are reading about them.

1http://cnx.org/content/col11294/latest/
2http://www.youtube.com/watch?v=c8plj9UsJbg
3http://www.youtube.com/watch?v=v-F06HgiUpw
4http://www.nvda-project.org/
5http://www.userite.com/ecampus/lesson1/tools.php
6http://www.youtube.com/watch?v=c8plj9UsJbg
7http://www.youtube.com/watch?v=v-F06HgiUpw
8http://www.clarku.edu/∼djoyce/trig/
9http://www.dickbaldwin.com/tocjscript1.htm

10http://www.w3schools.com/js/default.asp

http://cnx.org/content/m38431/1.2/

OpenStax-CNX module: m38431 3

2.3.1 Figures

• Figure 1 (p. 5) . Equations for collisions of two objects in two-dimensional space.
• Figure 2 (p. 11) . Output for the rear end car crash.
• Figure 3 (p. 14) . Output for the perfectly inelastic car crash.
• Figure 4 (p. 19) . Output for an elastic collision between two pucks on friction-free ice.
• Figure 5 (p. 23) . Output for a perfectly inelastic collision between objects with odd angles.
• Figure 6 (p. 29) . Output for rotation of the axes for simpli�cation.

2.3.2 Listings

• Listing 1 (p. 7) . The rear end car crash.
• Listing 2 (p. 11) . A perfectly inelastic car crash.
• Listing 3 (p. 15) . Elastic collision between two pucks on friction-free ice.
• Listing 4 (p. 19) . Perfectly inelastic collision between objects with odd angles.
• Listing 5 (p. 24) . Rotation of the axes for simpli�cation.

2.4 Supplemental material

I recommend that you also study the other lessons in my extensive collection of online programming tutorials.
You will �nd a consolidated index at www.DickBaldwin.com 11 .

3 Discussion

I have touched on collisions in one dimension in earlier modules. I will deal with collisions in a more rigorous
manner in this module, and will also extend the analysis to two dimensions.

note: Facts worth remembering � Types of collisions

An elastic collision is one in which the total kinetic energy is the same before and after the
collision.

An inelastic collision is one in which the �nal kinetic energy is less than the initial kinetic energy.

A perfectly inelastic collision is one that results in the two objects sticking together. The
decrease of kinetic energy in a perfectly inelastic collision is as large as possible (consistent with
the conservation of momentum).

Momentum is conserved regardless of whether the collision is elastic or inelastic.

A general solution for elastic collisions

I will provide you with three equations that apply in general to elastic collisions in two dimensions.
However, as you will see, there are more than three variables involved in such collisions. With only three
equations, you can only solve for three unknowns. Therefore, in order to solve the general problem, the
values of all the other variables must be known.

The two-dimensional solution can be applied to one-dimensional problems by constraining the directions
of motion of the two objects to either be the same or to di�er by 180 degrees. If possible, such problems
should be structured to cause the directions to be along the x-axis. This will often simplify the solution.

A general solution for inelastic collisions

The case for inelastic collisions is more restrictive than the case for elastic collisions. Only two of the
equations mentioned above apply to inelastic collisions. As a result, you can only solve for two unknown
values for an inelastic collision. The values for all of the other variables must be known.

11http://www.dickbaldwin.com/toc.htm

http://cnx.org/content/m38431/1.2/

OpenStax-CNX module: m38431 4

Collision equations

The equations for collisions of two objects in two-dimensional space are shown in Figure 1 (p. 5) . Note
that it is assumed that the two objects constitute an isolated system � that is, a closed system that is not
subject to external interactions. This requires that both the magnitude and the direction of the momentum
for the system be the same at the beginning and the end of the collision.

http://cnx.org/content/m38431/1.2/

OpenStax-CNX module: m38431 5

Equations for collisions of two objects in two-dimensional space.

Using conservation of momentum alone, we have two

equations, allowing us to solve for two unknowns.

m1*u1x + m2*u2x = m1*v1x + m2*v2x

m1*u1y + m2*u2y = m1*v1y + m2*v2y

Using conservation of kinetic energy for the elastic

case gives us one additional equation, allowing us

to solve for three unknowns.

0.5*m1*u1^2 + 0.5*m2*u2^2 = 0.5*m1*v1^2 + 0.5*m2*v2^2

Velocities can be decomposed into their x and

y-components using the following equations:

u1x = u1*cos(a1)

u1y = u1*sin(a1)

u2x = u2*cos(a2)

u2y = u2*sin(a2)

v1x = v1*cos(b1)

v1y = v1*sin(b1)

v2x = v2*cos(b2)

v2y = v2*sin(b2)

Substitution yields the following for the two momentum

equations:

m1*u1*cos(a1) + m2*u2*cos(a2) = m1*v1*cos(b1) + m2*v2*cos(b2)

m1*u1*sin(a1) + m2*u2*sin(a2) = m1*v1*sin(b1) + m2*v2*sin(b2)

where:

m1 and m2 are the masses of the two objects in kg

u1 and u2 are the magnitudes of the initial

velocities of the two objects. Velocities are

measured in meters/second

v1 and v2 are the magnitudes of the final velocities

of the two objects

u1x, u1y, v1x, and v1y are the x and y-components

of the initial and final velocities in 2D space.

a1 and a2 are angles that describe the initial

directions of the two objects through 2D space.

Angles are measured counter-clockwise relative to

the positive x-axis

b1 and b2 are angles that describe the final

directions of the two objects through 2D space

It is assumed that the two objects constitute an

isolated system.

Variables:

m1, m2, u1, u2, v1, v2, a1, a2, b1, b2

Figure 1: Equations for collisions of two objects in two-dimensional space.

http://cnx.org/content/m38431/1.2/

OpenStax-CNX module: m38431 6

What do the equations imply?

The �rst two equations based on momentum in Figure 1 (p. 5) require that the combined momentum of
the two objects be the same, along each axis, before and after the collision. Thus, one of the equations deals
with momentum along the horizontal axis and the other equation deals with momentum along the vertical
axis.

The terms in the two equations are:

• m1 and m2 represent the masses of object 1 and object 2.
• u1x and u2x represent the components of the velocities of the two objects along the horizontal or x

axis before the collision.
• u1y and u2y represent the components of the velocities of the two objects along the vertical or y axis

before the collision.
• v1x and v2x represent the components of the velocities of the two objects along the horizontal or x

axis after the collision.
• v1y and v2y represent the components of the velocities of the two objects along the vertical or y axis

after the collision.

The third or energy equation

As indicated in Figure 1 (p. 5) , this equation can only be used for the case of an elastic collision. This
equation requires that the total kinetic energy of the two objects before the collision be equal to the total
kinetic energy of the two objects after the collision.

In addition to the masses described above, this equation introduces the following terms:

• u1 and u2 represent the magnitudes of the velocities of the two objects before the collision.
• v1 and v2 represent the magnitudes of the velocities of the two objects after the collision.

De�nition of the angles

In order to compute the horizontal and vertical components of the velocities before and after the equations,
you must know the directions in which the objects are moving before and after the collision. Those directions
appear as angles in Figure 1 (p. 5) where

• a1 and a2 are angles measured counter clockwise relative to the horizontal axis that represent the
direction of travel of each of the objects respectively before the collision.

• b1 and b2 are angles measured counter clockwise relative to the horizontal axis that represent the
direction of travel of each of the objects respectively after the collision.

Ten variables

As you can see in Figure 1 (p. 5) , these equations involve ten variables. That means that in order for a
solution to be possible, the values for eight of the variables must be know for an inelastic collision, and the
values for seven of the variables must be known for an elastic collision.

Not conceptually di�cult

If you believe in the laws of conservation of momentum and conservation of energy on which these three
equations are based, the solution to collision problems is not conceptually di�cult.

However, depending on which variables are known, which are unknown, and whether the collision is
elastic, inelastic, or perfectly inelastic, you can come up with equations that are di�cult to solve from an
algebra/trigonometry viewpoint.

Axis rotation

For the case where none of the given directions are along the x- axis or the y-axis, you can sometimes
simplify the algebraic/trigonometric problem by rotating the axis so as to place one of those directions along
the x-axis or the y-axis. This will often cause one or more terms in the set of equations to go to zero, thus
simplifying the solution to the set of equations.

Having done that, you can rotate the axis by the same amount in the opposite direction at the end to
cause the �nal solution to apply to the original axes. I will present an example of this in the next section.

http://cnx.org/content/m38431/1.2/

OpenStax-CNX module: m38431 7

4 Example scenarios

Several examples

I will use the information in Figure 1 (p. 5) to analyze several scenarios involving collisions in both one
dimension and two dimensions in this section.

The use of JavaScript

All of these examples could be solved using the Google calculator. However, several steps are involved
and I �nd it easier to keep things organized and perform the steps in the correct order by using JavaScript
to compute and display the solution.

Note, however, that JavaScript will only do the arithmetic for you. You must still do the algebra/trigonometry
yourself. In these examples, I will usually work through the algebra in comment sections and switch to actual
code when it is time to compute and display one or more values.

4.1 One-dimensional scenarios

The �rst one-dimensional scenario involves an automobile accident.

4.1.1 The rear end car crash

The description as well as the solution to the problem are shown in Listing 1 (p. 7) .

Listing 1: The rear end car crash.

<!---------------- File JavaScript01.html --------------------->
<html><body>
<script language="JavaScript1.3">

/*

This script simulates car #2 rear-ending car #1 in a

one-dimensional elastic collision while car #1 was stopped.

The script computes and displays the speed of car #2

immediately before the collision under the assumption that

car #1 was moving at 20 m/s just after the collision.

Using conservation of momentum alone, we have two

equations, allowing us to solve for two unknowns.

m1*u1x + m2*u2x = m1*v1x + m2*v2x

m1*u1y + m2*u2y = m1*v1y + m2*v2y

Using conservation of kinetic energy for the elastic

case gives us one additional equation, allowing us

to solve for three unknowns.

0.5*m1*u1^2 + 0.5*m2*u2^2 = 0.5*m1*v1^2 + 0.5*m2*v2^2

Variables:

m1, m2, u1, u2, v1, v2, a1, a2, b1, b2

*/

document.write("Start Script </br>");

http://cnx.org/content/m38431/1.2/

OpenStax-CNX module: m38431 8

//Solve for u2 and v2 for an elastic collision

var m1 = 1500;//kg

var m2 = 2000;//kg

//Velocities before the collision

var u1 = 0;//meters per second - standing still

var u2;//unknown value to be determined

//Velocities after the collision

var v1 = 20;//meters/second

var v2;//unknown value to be determined

//Angles

var a1 = 0;//car was not moving

var a2 = 0;//moving straight ahead

var b1 = 0;//moving straight ahead

var b2 = 0;//moving straight ahead

//Convert angles to radians

A1 = a1*Math.PI/180;

A2 = a2*Math.PI/180;

B1 = b1*Math.PI/180;

B2 = b2*Math.PI/180;

//Compute and print the x and y components of velocity

u1x = u1*Math.cos(A1)

u1y = u1*Math.sin(A1)

//u2x = u2*Math.cos(A2)//unknown

//u2y = u2*Math.sin(A2)//unknown

v1x = v1*Math.cos(B1)

v1y = v1*Math.sin(B1)

//v2x = v2*Math.cos(B2)//unknown

//v2y = v2*Math.sin(B2)//unknown

document.write("x and y components of velocity</br>");

document.write("u1x = " + u1x.toFixed(3) + "</br>");

document.write("u1y = " + u1y.toFixed(3) + "</br>");

document.write("v1x = " + v1x.toFixed(3) + "</br>");

document.write("v1y = " + v1y.toFixed(3) + "</br>");

document.write("==============================="+ " </br>");

/*

Prepare the equations for use in solving the problem.

Given the following three equations

m1*u1x + m2*u2x = m1*v1x + m2*v2x

m1*u1y + m2*u2y = m1*v1y + m2*v2y

0.5*m1*u1^2 + 0.5*m2*u2^2 = 0.5*m1*v1^2 + 0.5*m2*v2^2

Eliminate all of the components for which the above printout

http://cnx.org/content/m38431/1.2/

OpenStax-CNX module: m38431 9

shows zero or for which the given values show zero.

0 + m2*u2x = m1*v1x + m2*v2x

0 + m2*u2y = 0 + m2*v2y

0 + 0.5*m2*u2^2 = 0.5*m1*v1^2 + 0.5*m2*v2^2

Although it isn't totally obvious from the equations, at this

point we need to recognize that because all velocities are

defined to occur along the x-axis, all of the terms in the

middle equation above that deals with the y-component of

velocity must be zero. Therefore, we can eliminate that

equation entirely.

We also need to recognize that because there are no velocity

components along the y-axis, the velocity components along

the x-axis are actually the magnitudes of those velocity

components. Thus, u2x = u2.

Now we will make the substitutions and eliminate terms with a

value of 0 in the process, yielding

m2*u2 = m1*v1 + m2*v2

0.5*m2*u2^2 = 0.5*m1*v1^2 + 0.5*m2*v2^2

Substituting known values into the two equations yields

2000*u2 = 1500*20 + 2000*v2

2000*u2^2 = 1500*20*20 + 2000*v2^2

Simplifying the two equations yields

u2 = 15 + v2

u2*u2 = 300 + v2*v2

Now we need to eliminate one equation through substitution

v2 = u2 - 15

u2*u2 = 300 + (u2 - 15)*(u2 - 15)

u2*u2 = 300 + u2*u2 - 30*u2 +225

u2*u2 - 300 - u2*u2 + 30*u2 -225 = 0

u2*u2 - u2*u2 + 30*u2 - 300 -225 = 0

30*u2 - 525 = 0

30*u2 = 525

*/

//Compute and print the first speed value

document.write("Speed values</br>");

u2 = 525/30;

document.write("u2 = " + u2.toFixed(2) + " m/s</br>");

/*

http://cnx.org/content/m38431/1.2/

OpenStax-CNX module: m38431 10

Substituting this value back into an earlier energy equation

yields

v2*v2 = u2*u2 - 300;

*/

//Compute and display the second speed value

v2 = Math.sqrt(u2*u2 - 300);

document.write("v2 = " + v2.toFixed(2) + " m/s</br>");

document.write("==============================="+ " </br>");

//Check the answers for conservation of momentum

document.write("Check for conservation of momentum</br>");

var mou = m1*u1 + m2*u2;

var mov = m1*v1 + m2*v2;

document.write("mou = " + mou.toFixed(0) + " Kg*m/s</br>");

document.write("mov = " + mov.toFixed(0) + " Kg*m/s</br>");

document.write("==============================="+ " </br>");

//Check the answer for elastic collision

var keIn = 0.5*m1*u1*u1 + 0.5*m2*u2*u2;

var keOut = 0.5*m1*v1*v1 + 0.5*m2*v2*v2;

document.write("Check for conservation of energy</br>");

document.write("keIn = " + keIn.toFixed(0)

+ " Kg*m^2/s^2</br>");

document.write("keOut = " + keOut.toFixed(0)

+ " Kg*m^2/s^2</br>");

document.write("End Script");

</script>
</body></html>

The output

The output produced by this script is shown in Figure 2 (p. 11) .
The only comments that I will make in addition to the comments in Listing 1 (p. 7) are that the values

displayed for mou, mov, keIn, and keOut near the end of Figure 2 (p. 11) show that both momentum and
kinetic energy were conserved. Therefore, the requirements for an elastic collision were met.

The meaning of each of those terms is as follows:

• mou represents total momentum before the crash
• mov represents total momentum after the crash
• keIn represents total kinetic energy before the crash
• keOut represents total kinetic energy after the crash

http://cnx.org/content/m38431/1.2/

OpenStax-CNX module: m38431 11

Output for the rear end car crash.

Start Script

x and y components of velocity

u1x = 0.000

u1y = 0.000

v1x = 20.000

v1y = 0.000

===============================

Speed values

u2 = 17.50 m/s

v2 = 2.50 m/s

===============================

Check for conservation of momentum

mou = 35000 Kg*m/s

mov = 35000 Kg*m/s

===============================

Check for conservation of energy

keIn = 306250 Kg*m^2/s^2

keOut = 306250 Kg*m^2/s^2

End Script

Figure 2: Output for the rear end car crash.

4.1.2 A perfectly inelastic car crash

The description and the solution to another rear end car crash are provided in Listing 2 (p. 11) . Whereas
the previous car-crash scenario described an elastic collision, this scenario describes a perfectly inelastic
collision.In this crash, the two cars become entangled and move forward as a single object following the
collision. Therefore, this is an example of a perfectly inelastic collision.

Listing 2: A perfectly inelastic car crash.

<!---------------- File JavaScript10.html --------------------->
<html><body>
<script language="JavaScript1.3">

/*

This script simulates car #2 rear-ending car #1 in a

one-dimensional perfectly inelastic collision while car #1 was

stopped.

http://cnx.org/content/m38431/1.2/

OpenStax-CNX module: m38431 12

Assume that car #2 was moving at 17.5 m/s immediately before

the collision. The cars became entangled and moved as a single

object in a straight line following the collision. Find

the velocity of the two objects immediately following the

collision. Find the total momentum of the two objects

immediately before and immediately after the collision.

Using conservation of momentum alone, we have two

equations, allowing us to solve for two unknowns.

m1*u1x + m2*u2x = m1*v1x + m2*v2x

m1*u1y + m2*u2y = m1*v1y + m2*v2y

However, because the cars are moving along the x-axis, all

terms in the second equation must be zero. This limits us to

only the first equation shown above. Note also that because

this is an inelastic collision, we can't use the equation

based on conservation of energy.

Variables:

m1, m2, u1, u2, v1, v2, a1, a2, b1, b2

*/

document.write("Start Script </br>");

var m1 = 1500;//kg

var m2 = 2000;//kg

//Velocities before the collision

var u1 = 0;//meters per second - standing still

var u2 = 17.5;//meters per second

//Velocities after the collision

var v1;//unknown but v2 = v1

var v2;//unknown value to be determined

//Angles

var a1 = 0;//car was not moving

var a2 = 0;//moving straight ahead

var b1;//unknown but not needed

var b2;//unknown but not needed

//Convert angles to radians

A1 = a1*Math.PI/180;

A2 = a2*Math.PI/180;

//B1 = b1*Math.PI/180;

//B2 = b2*Math.PI/180;

//Compute and print the initial x and y components of velocity.

// Because both cars are moving along the x-axis, all

// y-components are zero and all x components are equal to the

// magnitude.

http://cnx.org/content/m38431/1.2/

OpenStax-CNX module: m38431 13

u1x = u1

u1y = 0

u2x = u2

u2y = 0

//v1x = v1//unknown

v1y = 0

//v2x = v2//unknown

v2y = 0

document.write("Initial velocities</br>");

document.write("u1x = " + u1x.toFixed(2) + "</br>");

document.write("u2x = " + u2x.toFixed(2) + "</br>");

document.write("==============================="+ " </br>");

/*

Prepare the equations for use in solving the problem.

Given the following three equations

m1*u1x + m2*u2x = m1*v1x + m2*v2x

m1*u1y + m2*u2y = m1*v1y + m2*v2y

0.5*m1*u1^2 + 0.5*m2*u2^2 = 0.5*m1*v1^2 + 0.5*m2*v2^2

Only the first equation can be used for an inelastic collision

moving along the x-axis. This gives us the following equation

to work with.

m1*u1x + m2*u2x = m1*v1x + m2*v2x

Eliminate all of the components which are known to be zero.

m2*u2x = m1*v1x + m2*v2x

For a perfectly inelastic collision, v2=v1 yielding

m2*u2x = m1*v1x + m2*v1x, or

m2*u2x = (m1 + m2)*v1x

Rearranging terms gives the following:

*/

//Compute and print the final speed values

v1x = m2*u2x/(m1 + m2)

v2x = v1x;//required for a perfectly inelastic collision

document.write("Final speed values</br>");

document.write("v1x = " + v1x.toFixed(2) + " m/s</br>");

document.write("v2x = " + v2x.toFixed(2) + " m/s</br>");

document.write("==============================="+ " </br>");

//Check the answer for conservation of momentum

document.write("Check for conservation of momentum</br>");

http://cnx.org/content/m38431/1.2/

OpenStax-CNX module: m38431 14

var mou = m1*u1x + m2*u2x;//momentum before the collision

var mov = m1*v1x + m2*v2x;//momentum after the collision

document.write("mou = " + mou.toFixed(0) + " Kg*m/s</br>");

document.write("mov = " + mov.toFixed(0) + " Kg*m/s</br>");

document.write("==============================="+ " </br>");

document.write("End Script");

</script>
</body></html>

The output

Figure 3 (p. 14) shows the output for the car crash scenario portrayed by Listing 2.

Output for the perfectly inelastic car crash.

Start Script

Initial velocities

u1x = 0.00

u2x = 17.50

===============================

Final speed values

v1x = 10.00 m/s

v2x = 10.00 m/s

===============================

Check for conservation of momentum

mou = 35000 Kg*m/s

mov = 35000 Kg*m/s

===============================

End Script

Figure 3: Output for the perfectly inelastic car crash.

4.2 Two-dimensional scenarios

Now we will examine some two-dimensional scenarios. In these scenarios, the objects are free to move in a
plane described by horizontal and vertical coordinates. Instead of the directions of motion being limited to
only forward and backward, any object can move in any direction from 0 to 360 degrees.

http://cnx.org/content/m38431/1.2/

OpenStax-CNX module: m38431 15

4.2.1 Elastic collision between two pucks on friction-free ice

The description and the solution to a scenario involving an elastic collision between two pucks on friction-free
ice is shown in Listing 3 (p. 15) . As you will see:

• The pucks are free to move in two dimensions.
• Even though this is an elastic collision, there were only two unknowns, so it wasn't necessary to use

the energy-conservation equation to �nd a solution.

Three unknowns can be challenging

Elastic collisions involving three unknowns, particularly those where one or more angles are unknown,
can be challenging from an algebraic/trigonometric viewpoint. Those solutions typically involve a quadratic
equation containing trigonometric functions. This is not one of those especially challenging scenarios.

Listing 3: Elastic collision between two pucks on friction-free ice.

<!---------------- File JavaScript02.html --------------------->
<html><body>
<script language="JavaScript1.3">
/*

Obj1 and Obj2 are identical and are on friction-free ice. Obj1

has an initial velocity of 2.0 m/s in the direction

of 0 degrees. Obj2 is at rest. Obj1 collides elastically with

Obj2 and Obj1 moves off at 1.0 m/s at an angle of 60 degrees

north of east. What is the speed and direction of Obj2 after

the collision?

Using conservation of momentum alone, we have two

equations, allowing us to solve for two unknowns.

m1*u1x + m2*u2x = m1*v1x + m2*v2x

m1*u1y + m2*u2y = m1*v1y + m2*v2y

Using conservation of kinetic energy for the elastic

case gives us one additional equation, allowing us

to solve for three unknowns.

0.5*m1*u1^2 + 0.5*m2*u2^2 = 0.5*m1*v1^2 + 0.5*m2*v2^2

The specifications tell us that this is an elastic collision,

so we are free to use any or all of the three equations to

solve the problem. In this case, we have three equations but

only two unknowns, v2 and b1, so we won't need all three

of the equations.

Note that the specifications don't specify the values of the

masses, but do specify that they are the same. Therefore, we

will be able to cancel them out of all three equations.

Variables:

m1, m2, u1, u2, v1, v2, a1, a2, b1, b2

http://cnx.org/content/m38431/1.2/

OpenStax-CNX module: m38431 16

*/

document.write("Start Script </br>");

//var m1 = unknown;//kg

//var m2 = m1;//kg

var u1 = 2;//meters per second

var u2 = 0;//meters per second -- at rest

var v1 = 1;//meter per second

var v2;//unknown -- to find

var a1 = 0;//degrees

var a2 = 0;//degrees -- at rest

var b1 = 60;//degrees

var b2;//unknown -- to find

//Convert angles to radians

A1 = a1*Math.PI/180;

A2 = a2*Math.PI/180;

B1 = b1*Math.PI/180;

//B2 = b2*Math.PI/180;//unknown

//Compute the initial x and y components of velocity

u1x = u1*Math.cos(A1)

u1y = u1*Math.sin(A1)

u2x = u2*Math.cos(A2)

u2y = u2*Math.sin(A2)

v1x = v1*Math.cos(B1)

v1y = v1*Math.sin(B1)

//v2x = v2*Math.cos(B2) //unknown

//v2y = v2*Math.sin(B2) //unknown

/*

For the special case of m2=m1 the three equations can be

written as follows (after canceling out the m-terms):

u1x + u2x = v1x + v2x

u1y + u2y = v1y + v2y

0.5*u1*u1 + 0.5*u2*u2 = 0.5*v1*v1 + 0.5*v2*v2

Identify all terms that are known to be zero

u1x + 0 = v1x + v2x

0 + 0 = v1y + v2y

0.5*u1*u1 + 0.5*0*0 = 0.5*v1*v1 + 0.5*v2*v2

Removing those terms yields

u1x = v1x + v2x

0 = v1y + v2y

0.5*u1*u1 = 0.5*v1*v1 + 0.5*v2*v2

http://cnx.org/content/m38431/1.2/

OpenStax-CNX module: m38431 17

Divide through the energy equation by 0.5 for simplification

u1x = v1x + v2x

0 = v1y + v2y

u1*u1 = v1*v1 + v2*v2

Substitute known values

2 = 0.5 + v2x

0 = 0.866 + v2y

u1*u1 + = v1*v1 + v2*v2

This problem can be solved without using the energy equation.

I will use the energy equation later to check the results.

*/

//Compute the components, magnitude, and direction of the

// final velocity of obj #2

v2x = 2 - 0.5;

v2y = -0.866;

v2 = Math.sqrt(v2x*v2x + v2y*v2y);

b2 = getAngle(1.5,-0.866);

//Display the known values along with the results.

document.write("u1x = " + u1x.toFixed(2) + " m/s</br>");

document.write("u1y = " + u1y.toFixed(2) + " m/s</br>");

document.write("u2x = " + u2x.toFixed(2) + " m/s</br>");

document.write("u2y = " + u2y.toFixed(2) + " m/s</br>");

document.write("v1x = " + v1x.toFixed(2) + " m/s</br>");

document.write("v1y = " + v1y.toFixed(2) + " m/s</br>");

document.write("v2x = " + v2x.toFixed(2) + " m/s</br>");

document.write("v2y = " + v2y.toFixed(3) + " m/s</br>");

document.write("u1 = " + u1.toFixed(2) + " m/s</br>");

document.write("u2 = " + u2.toFixed(2) + " m/s</br>");

document.write("v1 = " + v1.toFixed(2) + " m/s</br>");

document.write("==============================="+ " </br>");

document.write("v2 = " + v2.toFixed(2) + " m/s</br>");

document.write("b2 = " + b2.toFixed(2) + " degrees</br>");

document.write("==============================="+ " </br>");

//Check the answers assuming that the mass of the objects

// is one Kg each.

var moux = u1x + u2x;

var movx = v1x + v2x;

var mouy = u1y + u2y;

var movy = v1y + v2y;

http://cnx.org/content/m38431/1.2/

OpenStax-CNX module: m38431 18

document.write("moux = " + moux.toFixed(2) + " Kg*m/s</br>");

document.write("movx = " + movx.toFixed(2) + " Kg*m/s</br>");

document.write("mouy = " + mouy.toFixed(2) + " Kg*m/s</br>");

document.write("movy = " + movy.toFixed(2) + " Kg*m/s</br>");

//Check to confirm an elastic collision

var u1 = Math.sqrt(u1x*u1x + u1y*u1y);

var u2 = Math.sqrt(u2x*u2x + u2y*u2y);

var v1 = Math.sqrt(v1x*v1x + v1y*v1y);

var v2 = Math.sqrt(v2x*v2x + v2y*v2y);

var mou = 0.5*u1*u1 + 0.5*u2*u2;

var mov = 0.5*v1*v1 + 0.5*v2*v2;

document.write("mou = " + mou.toFixed(2) + " Kg*m/s</br>");

document.write("mov = " + mov.toFixed(2) + " Kg*m/s</br>");

document.write("==============================="+ " </br>");

//The purpose of this function is to receive the adjacent

// and opposite side values for a right triangle and to

// return the angle in degrees in the correct quadrant.

function getAngle(x,y){

if((x == 0) && (y == 0)){

//Angle is indeterminate. Just return zero.

return 0;

}else if((x == 0) && (y > 0)){

//Avoid divide by zero denominator.

return 90;

}else if((x == 0) && (y < 0)){

//Avoid divide by zero denominator.

return -90;

}else if((x < 0) && (y >= 0)){

//Correct to second quadrant

return Math.atan(y/x)*180/Math.PI + 180;

}else if((x < 0) && (y <= 0)){

//Correct to third quadrant

return Math.atan(y/x)*180/Math.PI + 180;

}else{

//First and fourth quadrants. No correction required.

return Math.atan(y/x)*180/Math.PI;

}//end else

}//end function getAngle

document.write("End Script");

</script>
</body></html>

The output

The output for this scenario is shown in Figure 4 (p. 19) .

http://cnx.org/content/m38431/1.2/

OpenStax-CNX module: m38431 19

Output for an elastic collision between two pucks on friction-free ice.

Start Script

u1x = 2.00 m/s

u1y = 0.00 m/s

u2x = 0.00 m/s

u2y = 0.00 m/s

v1x = 0.50 m/s

v1y = 0.87 m/s

v2x = 1.50 m/s

v2y = -0.866 m/s

u1 = 2.00 m/s

u2 = 0.00 m/s

v1 = 1.00 m/s

===============================

v2 = 1.73 m/s

b2 = -30.00 degrees

===============================

moux = 2.00 Kg*m/s

movx = 2.00 Kg*m/s

mouy = 0.00 Kg*m/s

movy = 0.00 Kg*m/s

mou = 2.00 Kg*m/s

mov = 2.00 Kg*m/s

===============================

End Script

Figure 4: Output for an elastic collision between two pucks on friction-free ice.

Hopefully the comments in the script will be su�cient to explain the solution to this problem.

4.2.2 Perfectly inelastic collision between objects with odd angles

Listing 4 (p. 19) provides the description and the solution to a scenario involving a perfectly inelastic collision
between two objects in a friction-free environment moving at odd angles. By odd angles, I mean that neither
object is moving along either the x-axis or the y-axis, either before or after the collision.

Listing 4: Perfectly inelastic collision between objects with odd angles.

<!---------------- File JavaScript03.html --------------------->
<html><body>
<script language="JavaScript1.3">

http://cnx.org/content/m38431/1.2/

OpenStax-CNX module: m38431 20

/*

Obj1 with a mass of 1 Kg and an initial velocity of 3000 m/s

in a direction 67 degrees north of east collides in a perfectly

inelastic manner with Obj2, whose mass is also 1 Kg and whose

initial velocity is 2000 m/s in a direction 45 degrees north of east.

Calculate (1) the angle of motion of the combined bodies,

and (2) the magnitude of the momentum of the combined bodies

after the collision.

Using conservation of momentum alone, we have two

equations, allowing us to solve for two unknowns.

m1*u1x + m2*u2x = m1*v1x + m2*v2x

m1*u1y + m2*u2y = m1*v1y + m2*v2y

Variables:

m1, m2, u1, u2, v1, v2, a1, a2, b1, b2

*/

document.write("Start Script </br>");

var m1 = 1;//kg

var m2 = 1;//kg

var u1 = 3000;//meters per second

var u2 = 2000;//meters per second

var v1;//unknown -- to be found

var v2;//unknown -- to be found

var a1 = 67;//degrees

var a2 = 45;//degrees

var b1;//unknown -- to be found

var b2;//unknown -- to be found

//Perfectly inelastic collision so v2=v1 and b2=b1

//Convert angles to radians

A1 = a1*Math.PI/180;

A2 = a2*Math.PI/180;

//B1 = b1*Math.PI/180;//unknown

//B2 = b2*Math.PI/180;//unknown

//Compute the x and y components of velocity

u1x = u1*Math.cos(A1)

u1y = u1*Math.sin(A1)

u2x = u2*Math.cos(A2)

u2y = u2*Math.sin(A2)

//v1x = v1*Math.cos(B1)//unknown

//v1y = v1*Math.sin(B1)//unknown

http://cnx.org/content/m38431/1.2/

OpenStax-CNX module: m38431 21

//v2x = v2*Math.cos(B2)//unknown

//v2y = v2*Math.sin(B2)//unknown

/*

For the special case of m2=m1=1 and v2=v1 (perfectly inelastic

collision) we can simplify the equations to the following:

u1x + u2x = 2*v1x

u1y + u2y = 2*v1y

*/

//Rearranging terms yields

v1x = (u1x + u2x)/2

v1y = (u1y + u2y)/2

//Knowing the x and y components of the final velocity, we can

// find the angle and magnitude as

b1 = getAngle(v1x,v1y);

v1 = Math.sqrt(v1x*v1x + v1y*v1y);

//Compute the momentum after the collision

var Px = v1x*(m1 + m2);

var Py = v1y*(m1 + m2);

var Pmag = Math.sqrt(Px*Px + Py*Py);

//Display the results

document.write("b1 = " + b1.toFixed(1) + " degrees</br>");

document.write("v1 = " + v1.toFixed(0) + " m/s</br>");

document.write("v1x = " + v1x.toFixed(0) + " m/s</br>");

document.write("v1y = " + v1y.toFixed(0) + " m/s</br>");

document.write("Px = " + Px.toFixed(0) + " Kg*m/s</br>");

document.write("Py = " + Py.toFixed(0) + " Kg*m/s</br>");

document.write("Pmag = " + Pmag.toFixed(0) + " Kg*m/s</br>");

document.write("==============================="+ " </br>");

//Check the answer for perfect inelastic collision

v2x = v1x;

v2y = v1y;

v2 = v1;

var moux = u1x + u2x;

var movx = v1x + v2x;

var mouy = u1y + u2y;

var movy = v1y + v2y;

var mou = Math.sqrt(moux * moux + mouy * mouy);

var mov = Math.sqrt(movx * movx + movy * movy);

document.write("moux = " + moux.toFixed(0) + " Kg*m/s</br>");

document.write("movx = " + movx.toFixed(0) + " Kg*m/s</br>");

document.write("mouy = " + mouy.toFixed(0) + " Kg*m/s</br>");

document.write("movy = " + movy.toFixed(0) + " Kg*m/s</br>");

document.write("mou = " + mou.toFixed(0) + " Kg*m/s</br>");

http://cnx.org/content/m38431/1.2/

OpenStax-CNX module: m38431 22

document.write("mov = " + mov.toFixed(0) + " Kg*m/s</br>");

document.write("==============================="+ " </br>");

//The purpose of this function is to receive the adjacent

// and opposite side values for a right triangle and to

// return the angle in degrees in the correct quadrant.

function getAngle(x,y){

if((x == 0) && (y == 0)){

//Angle is indeterminate. Just return zero.

return 0;

}else if((x == 0) && (y > 0)){

//Avoid divide by zero denominator.

return 90;

}else if((x == 0) && (y < 0)){

//Avoid divide by zero denominator.

return -90;

}else if((x < 0) && (y >= 0)){

//Correct to second quadrant

return Math.atan(y/x)*180/Math.PI + 180;

}else if((x < 0) && (y <= 0)){

//Correct to third quadrant

return Math.atan(y/x)*180/Math.PI + 180;

}else{

//First and fourth quadrants. No correction required.

return Math.atan(y/x)*180/Math.PI;

}//end else

}//end function getAngle

document.write("End Script");

</script>
</body></html>

The output

The output for the script shown in Listing 4 (p. 19) is provided in Figure 5 (p. 23) .

http://cnx.org/content/m38431/1.2/

OpenStax-CNX module: m38431 23

Output for a perfectly inelastic collision between objects with odd angles.

Start Script

b1 = 58.2 degrees

v1 = 2456 m/s

v1x = 1293 m/s

v1y = 2088 m/s

Px = 2586 Kg*m/s

Py = 4176 Kg*m/s

Pmag = 4912 Kg*m/s

===============================

moux = 2586 Kg*m/s

movx = 2586 Kg*m/s

mouy = 4176 Kg*m/s

movy = 4176 Kg*m/s

mou = 4912 Kg*m/s

mov = 4912 Kg*m/s

===============================

End Script

Figure 5: Output for a perfectly inelastic collision between objects with odd angles.

As before, I will allow the comments in Listing 4 (p. 19) serve as the explanation for the solution of this
scenario.

4.2.3 Rotating the axes for simpli�cation

The scenario shown in Listing 5 (p. 24) illustrates how, in some cases, you can simplify the algebra/trigonometry
by rotating the axes. This situation occurs when none of the directions involving the two objects lies along
either the x or y axis. In those cases, you may be able to simplify the three equations that you develop by
rotating the axes such that one of the directions lies along either the x or the y axis. That will often cause
some of the terms in the equations to go to zero and drop out of the equations.

A crash at an intersection

If you examine the scenario shown in Listing 5 (p. 24) carefully, you will see that it is the classic collision
at the intersection of two streets that are perpendicular to one another. However, the streets don't run in
north-south, east-west directions.

Rotating the axes simpli�ed the problem

In this particular case, rotating the axes so that one street runs east and west while the other street runs
north and south simpli�es the equations considerably.

Don't forget the rotate the axes back at the end

Of course, if you rotate the axes to simplify the solution, you must remember to rotate it back again,
and correct the solution accordingly, once you have a solution. The procedure for doing that is illustrated

http://cnx.org/content/m38431/1.2/

OpenStax-CNX module: m38431 24

in the scenario shown in Listing 5 (p. 24) .

Listing 5: Rotation of the axes for simpli�cation.

<!---------------- File JavaScript04.html --------------------->
<html><body>
<script language="JavaScript1.3">

/*

Two objects collide in a perfectly inelastic collision. Obj1

has a mass of 10000 kg and is traveling 30 degrees north of

east at 15 m/s. Obj2 has a mass of 1500 kg and is traveling

30 degrees west of north, or 120 degrees at 25 m/s. Find

the direction that the two object move and the speed of that

movement following the collision.

Note that this script illustrates rotating the axis to simplify

the problem.

Using conservation of momentum alone, we have two

equations, allowing us to solve for two unknowns.

m1*u1x + m2*u2x = m1*v1x + m2*v2x

m1*u1y + m2*u2y = m1*v1y + m2*v2y

Variables:

m1, m2, u1, u2, v1, v2, a1, a2, b1, b2

*/

document.write("Start Script </br>");

var m1 = 10000;//kg

var m2 = 1500;//kg

var u1 = 15;//meters per second

var u2 = 25;//meters per second

var v1;//unknown -- to be found

var v2;//unknown -- to be found

var a1 = 30;//degrees

var a2 = 120;//degrees

var b1;//unknown -- to be found

var b2;//unknown -- to be found

//For a perfectly inelastic collision, v2=v1 and b2=b1

//Convert angles to radians

A1 = a1*Math.PI/180;

A2 = a2*Math.PI/180;

//B1 = b1*Math.PI/180;//unknown

//B2 = b2*Math.PI/180;//unknown

//Compute the x and y components of velocity

http://cnx.org/content/m38431/1.2/

OpenStax-CNX module: m38431 25

u1x = u1*Math.cos(A1)

u1y = u1*Math.sin(A1)

u2x = u2*Math.cos(A2)

u2y = u2*Math.sin(A2)

//v1x = v1*Math.cos(B1)//unknown

//v1y = v1*Math.sin(B1)//unknown

//v2x = v2*Math.cos(B2)//unknown

//v2y = v2*Math.sin(B2)//unknown

//Display the x and y components of initial velocity

document.write("x and y components of initial velocity</br>");

document.write("u1x = " + u1x.toFixed(2) + " m/s</br>");

document.write("u1y = " + u1y.toFixed(2) + " m/s</br>");

document.write("u2x = " + u2x.toFixed(2) + " m/s</br>");

document.write("u2y = " + u2y.toFixed(2) + " m/s</br>");

document.write("==============================="+ " </br>");

/*

Given the following two equations

m1*u1x + m2*u2x = m1*v1x + m2*v2x

m1*u1y + m2*u2y = m1*v1y + m2*v2y

For the special case of v2=v1 (perfectly inelastic

collision), the equations can be simplified to the following:

m1*u1x + m2*u2x = (m1 + m2)*v1x

m1*u1y + m2*u2y = (m1 + m2)*v1y

Replace the terms with known x and y velocity component values.

m1*13 + m2*(-12.5) = (m1 + m2)*v1x

m1*7.5 + m2*21.6 = (m1 + m2)*v1y

A judicious examination of the problem reveals that if we were

to rotate the axis by 30 degrees clockwise, we could cause

some of the terms in these two equations to go to zero. We will

subtract 30 degrees from the given angles at this point and

add that 30 degrees back into the results at the end.

*/

a1 = a1 - 30;

a2 = a2 - 30;

//Convert the new angles to radians

A1 = a1*Math.PI/180;

A2 = a2*Math.PI/180;

//Recompute the x and y components of velocity

u1x = u1*Math.cos(A1)

u1y = u1*Math.sin(A1)

http://cnx.org/content/m38431/1.2/

OpenStax-CNX module: m38431 26

u2x = u2*Math.cos(A2)

u2y = u2*Math.sin(A2)

//Display the new x and y components of initial velocity

document.write(" New x and y components of velocity</br>");

document.write("u1x = " + u1x.toFixed(2) + " m/s</br>");

document.write("u1y = " + u1y.toFixed(2) + " m/s</br>");

document.write("u2x = " + u2x.toFixed(2) + " m/s</br>");

document.write("u2y = " + u2y.toFixed(2) + " m/s</br>");

document.write("==============================="+ " </br>");

/*

Returning now to the special case of v2=v1 (perfectly inelastic

collision):

m1*u1x + m2*u2x = (m1 + m2)*v1x

m1*u1y + m2*u2y = (m1 + m2)*v1y

Replace the x and y components of velocity with the modified

values, two of which are now 0. This results in a simplification

of the equations.

m1*15 + m2*0 = (m1 + m2)*v1x

m1*0 + m2*25 = (m1 + m2)*v1y

Plugging in the values for mass and eliminating terms with

a zero value yields

10000*15 = (10000 + 1500)*v1x

1500*25 = (10000 + 1500)*v1y

*/

//Rearranging terms yields

v1x = (10000*15)/(10000 + 1500)

v1y = (1500*25)/(10000 + 1500)

//Compute the magnitude and the angle of the velocity of the

// two objects following the collision.

v1 = Math.sqrt(v1x*v1x + v1y*v1y);

b1 = getAngle(v1x,v1y);

//Because this is a perfectly inelastic collision, v2=v1

// and b2=b1

v2 = v1;

b2 = b1;

//Display results for the modified angles

document.write("Results for modified angles</br>");

document.write("v1x = " + v1x.toFixed(1) + " m/s</br>");

document.write("v1y = " + v1y.toFixed(1) + " m/s</br>");

document.write("v1 = " + v1.toFixed(1) + " m/s</br>");

document.write("v2 = " + v2.toFixed(1) + " m/s</br>");

document.write("b1 = " + b1.toFixed(1) + " degrees</br>");

document.write("b2 = " + b2.toFixed(1) + " degrees</br>");

http://cnx.org/content/m38431/1.2/

OpenStax-CNX module: m38431 27

document.write("==============================="+ " </br>");

/*

Now we need to rotate the axis by 30 degrees counter-clockwise

to correct for the original rotation by 30 degrees clockwise.

The magnitude of the final velocity is the same regardless of

the orientation of the axes. Therefore, we will add 30 degrees

to the values of b1 and b2, and use the new angles along with

the magnitude of the final velocity to recompute the x and y

components of the final velocity.

*/

b1 = b1 + 30;

b2 = b1;

v1x = v1*Math.cos(b1*Math.PI/180);

v1y = v1*Math.sin(b1*Math.PI/180);

//Display results for the corrected angle

document.write("Results for corrected angle</br>");

document.write("v1x = " + v1x.toFixed(1) + " m/s</br>");

document.write("v1y = " + v1y.toFixed(1) + " m/s</br>");

document.write("v1 = " + v1.toFixed(1) + " m/s</br>");

document.write("v2 = " + v2.toFixed(1) + " m/s</br>");

document.write("b1 = " + b1.toFixed(1) + " degrees</br>");

document.write("b2 = " + b2.toFixed(1) + " degrees</br>");

document.write("==============================="+ " </br>");

//Check the answer for a perfect inelastic collision. Must

// recognize that v2=v1 and correct the angles for a1 and a2.

v2x = v1x;

v2y = v1y;

u1x = u1*Math.cos((a1+30)*Math.PI/180);

u1y = u1*Math.sin((a1+30)*Math.PI/180);

u2x = u2*Math.cos((a2+30)*Math.PI/180);

u2y = u2*Math.sin((a2+30)*Math.PI/180);

var moux = m1*u1x + m2*u2x;

var movx = m1*v1x + m2*v2x;

var mouy = m1*u1y + m2*u2y;

var movy = m1*v1y + m2*v2y;

var mou = Math.sqrt(moux * moux + mouy * mouy);

var mov = Math.sqrt(movx * movx + movy * movy);

document.write("Check the answers.</br>");

document.write("moux = " + moux.toFixed(0) + " Kg*m/s</br>");

document.write("movx = " + movx.toFixed(0) + " Kg*m/s</br>");

document.write("mouy = " + mouy.toFixed(0) + " Kg*m/s</br>");

document.write("movy = " + movy.toFixed(0) + " Kg*m/s</br>");

document.write("mou = " + mou.toFixed(0) + " Kg*m/s</br>");

http://cnx.org/content/m38431/1.2/

OpenStax-CNX module: m38431 28

document.write("mov = " + mov.toFixed(0) + " Kg*m/s</br>");

document.write("==============================="+ " </br>");

//The purpose of this function is to receive the adjacent

// and opposite side values for a right triangle and to

// return the angle in degrees in the correct quadrant.

function getAngle(x,y){

if((x == 0) && (y == 0)){

//Angle is indeterminate. Just return zero.

return 0;

}else if((x == 0) && (y > 0)){

//Avoid divide by zero denominator.

return 90;

}else if((x == 0) && (y < 0)){

//Avoid divide by zero denominator.

return -90;

}else if((x < 0) && (y >= 0)){

//Correct to second quadrant

return Math.atan(y/x)*180/Math.PI + 180;

}else if((x < 0) && (y <= 0)){

//Correct to third quadrant

return Math.atan(y/x)*180/Math.PI + 180;

}else{

//First and fourth quadrants. No correction required.

return Math.atan(y/x)*180/Math.PI;

}//end else

}//end function getAngle

//The purpose of the getRoots function is to compute and

// return the roots of a quadratic equation expressed in

// the format

// a*x^2 + b*x + c = 0

//The roots are returned in the elements of a two-element

// array. If the roots are imaginary, the function

// returns NaN for the value of each root.

function getRoots(a,b,c){

var roots = new Array(2);

roots[0] = (-b+Math.sqrt(b*b-4*a*c))/(2*a);

roots[1] = (-b-Math.sqrt(b*b-4*a*c))/(2*a);

return roots;

}//end getRoots

document.write("End Script");

</script>
</body></html>

The output

The output for this scenario is shown in Figure 6 (p. 29) .

http://cnx.org/content/m38431/1.2/

OpenStax-CNX module: m38431 29

Output for rotation of the axes for simpli�cation.

Start Script

x and y components of initial velocity

u1x = 12.99 m/s

u1y = 7.50 m/s

u2x = -12.50 m/s

u2y = 21.65 m/s

===============================

New x and y components of velocity

u1x = 15.00 m/s

u1y = 0.00 m/s

u2x = 0.00 m/s

u2y = 25.00 m/s

===============================

Results for modified angles

v1x = 13.0 m/s

v1y = 3.3 m/s

v1 = 13.4 m/s

v2 = 13.4 m/s

b1 = 14.0 degrees

b2 = 14.0 degrees

===============================

Results for corrected angle

v1x = 9.7 m/s

v1y = 9.3 m/s

v1 = 13.4 m/s

v2 = 13.4 m/s

b1 = 44.0 degrees

b2 = 44.0 degrees

===============================

Check the answers.

moux = 111154 Kg*m/s

movx = 111154 Kg*m/s

mouy = 107476 Kg*m/s

movy = 107476 Kg*m/s

mou = 154616 Kg*m/s

mov = 154616 Kg*m/s

===============================

End Script

Figure 6: Output for rotation of the axes for simpli�cation.

http://cnx.org/content/m38431/1.2/

OpenStax-CNX module: m38431 30

Once more, I will allow the comments in Listing 4 (p. 19) to serve as the explanation for the solution of
this scenario.

5 Run the scripts

I encourage you to run the scripts that I have presented in this lesson to con�rm that you get the same
results. Copy the code for each script into a text �le with an extension of html. Then open that �le in
your browser. Experiment with the code, making changes, and observing the results of your changes. Make
certain that you can explain why your changes behave as they do.

6 Resources

I will publish a module containing consolidated links to resources on my Connexions web page and will
update and add to the list as additional modules in this collection are published.

7 Miscellaneous

This section contains a variety of miscellaneous information.

note: Housekeeping material

• Module name: Energy � Elastic and Inelastic Collisions in Two Dimensions for Blind Students

• File: Phy1215.htm
• Keywords:

· physics
· accessible
· accessibility
· blind
· graph board
· protractor
· screen reader
· refreshable Braille display
· JavaScript
· trigonometry
· one-dimensional
· two-dimensional
· collision
· elastic collision
· inelastic collision
· perfectly inelastic collision
· kinetic energy
· conservation of momentum
· conservation of energy

note: Disclaimers: Financial : Although the Connexions site makes it possible for you to
download a PDF �le for this module at no charge, and also makes it possible for you to purchase a
pre-printed version of the PDF �le, you should be aware that some of the HTML elements in this
module may not translate well into PDF.

I also want you to know that I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

http://cnx.org/content/m38431/1.2/

OpenStax-CNX module: m38431 31

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

http://cnx.org/content/m38431/1.2/

