# Connexions

You are here: Home » Content » Gemiddelde gradient - Graad 10 [CAPS]

### Lenses

What is a lens?

#### Definition of a lens

##### Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

##### What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

##### Who can create a lens?

Any individual member, a community, or a respected organization.

##### What are tags?

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

#### Affiliated with (What does "Affiliated with" mean?)

This content is either by members of the organizations listed or about topics related to the organizations listed. Click each link to see a list of all content affiliated with the organization.
• FETWisk

This module is approved and included inLens: Siyavula: Wiskunde (Gr 10 - 12)
By: Siyavula

Review Status: Approved

Click the "FETWisk" link to see all content affiliated with them.

Click the tag icon to display tags associated with this content.

### Recently Viewed

This feature requires Javascript to be enabled.

### Tags

(What is a tag?)

These tags come from the endorsement, affiliation, and other lenses that include this content.

## Inleiding

Die gradiënt van 'n reguitlyngrafiek word bereken met:

y 2 - y 1 x 2 - x 1 y 2 - y 1 x 2 - x 1
(1)

vir 2 punte (x1;y1)(x1;y1) en (x2;y2)(x2;y2) op die grafiek.

Ons kan nou die gemiddelde gradiënt tussen 2 punte (x1;y1)(x1;y1) en (x2;y2)(x2;y2) bepaal, selfs al word hulle gedefinieer deur 'n funksie wat nie 'n reguitlyn is nie, met:

y 2 - y 1 x 2 - x 1 y 2 - y 1 x 2 - x 1
(2)

Dit is dieselfde as vergelyking 1.

## Reguitlynfunksies

### Ondersoek: Gemiddelde Gradiënt - Reguitlynfunksie

Voltooi die tabel deur die gemiddelde gradiënt oor die aangeduide intervalle te bereken vir die funksie f(x)=2x-2f(x)=2x-2. Let daarop dat (x1x1;y1y1) die koördinate is van die eerste punt en dat (x2x2;y2y2) die koördinate is van die tweede punt. So, vir AB is (x1x1;y1y1) die koördinate van punt A en (x2x2;y2y2) is die koördinate van punt B.

 x 1 x 1 x 2 x 2 y 1 y 1 y 2 y 2 y 2 - y 1 x 2 - x 1 y 2 - y 1 x 2 - x 1 A-B A-C B-C

Wat let jy op van die gradiënte oor elke interval?

Die gemiddelde gradiënt van 'n reguitlynfunksie is dieselfde oor enige twee intervalle in die funksie.

## Paraboliese Funksie

### Ondersoek : Gemiddelde Gradiënt - Paraboliese Funksie

Vul die tabel in deur die gemiddelde gradiënt oor die aangeduide intervalle te bereken vir die funksie f(x)=2x-2f(x)=2x-2:

 x 1 x 1 x 2 x 2 y 1 y 1 y 2 y 2 y 2 - y 1 x 2 - x 1 y 2 - y 1 x 2 - x 1 A-B B-C C-D D-E E-F F-G

Wat let jy op van die gemiddelde gradiënt oor elke interval? Wat kan jy sê oor die gemiddelde gradiënte tussen A en D in vergelyking met die gemiddelde gradiënte tussen D en G?

Die gemiddelde gradiënt van 'n paraboliese funksie hang af van die interval en is die gradiënt van 'n reguitlyn wat deur die betrokke punte op daardie interval loop.

Byvoorbeeld, in figuur 3 is die verskeie punte verbind deur reguitlyne. Die gemiddelde gradiënte tussen die betrokke punte is dan die gradiënte van die reguitlyne wat deur daardie punte loop.

Gegee, die vergelyking van 'n kromme en twee punte (x1x1; x2x2):

1. Skryf die vergelyking van die kromme in die vorm y=...y=....
2. Bereken y1y1 deur x1x1 in die vergelyking vir die kromme in te stel.
3. Bereken y2y2 deur x2x2 in die vergelyking vir die kromme in te stel.
4. Bereken die gemiddelde gradiënt deur gebruik te maak van:
y2-y1x2-x1y2-y1x2-x1
(3)

Vind die gemiddelde gradiënt van die kromme y=5x2-4y=5x2-4 tussen die punte x=-3x=-3 en x=3x=3.

##### Solution
1. Stap 1. Merk (benoem) die punte :

Merk die punte as volg:

x 1 = - 3 x 1 = - 3
(4)
x 2 = 3 x 2 = 3
(5)

om dit makliker te maak om die gradiënt te bereken.

2. Stap 2. Bereken die yy koördinate :

Ons gebruik die vergelyking van die kromme om die yy-waarde van die kromme by x1x1 en x2x2 te vind.

y 1 = 5 x 1 2 - 4 = 5 ( - 3 ) 2 - 4 = 5 ( 9 ) - 4 = 41 y 1 = 5 x 1 2 - 4 = 5 ( - 3 ) 2 - 4 = 5 ( 9 ) - 4 = 41
(6)
y 2 = 5 x 2 2 - 4 = 5 ( 3 ) 2 - 4 = 5 ( 9 ) - 4 = 41 y 2 = 5 x 2 2 - 4 = 5 ( 3 ) 2 - 4 = 5 ( 9 ) - 4 = 41
(7)
3. Stap 3. Bereken die gemiddelde gradiënt :
y 2 - y 1 x 2 - x 1 = 41 - 41 3 - ( - 3 ) = 0 3 + 3 = 0 6 = 0 y 2 - y 1 x 2 - x 1 = 41 - 41 3 - ( - 3 ) = 0 3 + 3 = 0 6 = 0
(8)
4. Stap 4. Skryf die finale antwoord neer :

Die gemiddelde gradiënt tussen x=-3x=-3 en x=3x=3 op die kromme y=5x2-4y=5x2-4 is 0.

## Gemiddelde Gradiënt van ander Funksies

Ons kan die konsep van die gemiddelde gradiënt uitbrei na enige funksie. Die gemiddelde gradiënt van enige nie-reglynige funksie hang af van die gekose interval want dit is die gradiënt van die reguitlyn wat deur die twee gekose punte gaan; dit is nie konstant nie. Ons kan dus die formule gebruik wat ons gebruik het vir die gemiddelde gradiënt van paraboliese funksies en dit toepas op enige ander funksie. Ons sal die gemiddelde gradiënt van twee funksies hier ondersoek: die eksponensiële funksie en die hiperboliese funksie.

### Gemiddelde Gradiënt van Eksponensiële Funksies

Veronderstel ons word gevra om die gemiddelde gradiënt van die funksie g(x)=3.2x+2g(x)=3.2x+2 tussen die punte (-4;2,2)(-4;2,2) en (-0,6;4)(-0,6;4) te vind. Dit word getoon in figuur 4.

As ons die formule gebruik, vind ons:
y 2 - y 1 x 2 - x 1 = 4 - 2,2 ( - 0,6 ) - ( - 4 ) = 1,8 - 0,6 + 4 = 1,8 5,2 = 0,35 y 2 - y 1 x 2 - x 1 = 4 - 2,2 ( - 0,6 ) - ( - 4 ) = 1,8 - 0,6 + 4 = 1,8 5,2 = 0,35
(9)

### Gemiddelde Gradiënt van Hiperboliese Funksies

Gestel ons word byvoorbeeld gevra om die gemiddelde gradiënte te vind van die funksie g(x)=2x+2g(x)=2x+2 tussen die punte(-4;-2,5)(-4;-2,5) en (0,5;6)(0,5;6) ; asook tussen (-4;2,2)(-4;2,2) en (-0,6;4)(-0,6;4). Dit word getoon in figuur 5.

Vir die eerste punt kry ons:

y 2 - y 1 x 2 - x 1 = ( - 2,5 ) - 1 ( - 4 ) - 0,5 = - 3,5 - 4,5 = 0,78 y 2 - y 1 x 2 - x 1 = ( - 2,5 ) - 1 ( - 4 ) - 0,5 = - 3,5 - 4,5 = 0,78
(10)
Soortgelyk, die gemiddelde gradiënt tussen die tweede stel punte sal wees 0,530,53.

## Opsomming

• Die gemiddelde gradiënt tussen twee punte is: y 2 - y 1 x 2 - x 1 y 2 - y 1 x 2 - x 1
• Die gemiddelde gradiënt van 'n reguitlynfunksie is dieselfde oor enige interval (tussen enige twee punte) op die reguitlyn.
• Die gemiddelde gradiënt van 'n paraboliese funksie hang af van die punte (interval) wat gekies is; dit is die gradiënt van die reguitlyn wat deur die gekose punte gaan.
• Ons kan die konsep van gemiddelde gradiënt uitbrei na enige funksie.

## Einde van die Hoofstuk Oefeninge

1. 'n Voorwerp beweeg volgens die funksie d=2t2+1d=2t2+1 , waar dd die afstand in meter is en tt die tyd in sekondes. Bereken die gemiddelde snelheid van die voorwerp tussen die tweede en derde sekondes. Die snelheid is die gradiënt van die funksie dd
Kliek hier vir die oplossing
2. Gegee: f(x)=x3-6xf(x)=x3-6x. Bepaal die gemiddelde gradiënt tussen die punte x=1x=1 en x=4x=4.
Kliek hier vir die oplossing

## Content actions

PDF | EPUB (?)

### What is an EPUB file?

EPUB is an electronic book format that can be read on a variety of mobile devices.

My Favorites (?)

'My Favorites' is a special kind of lens which you can use to bookmark modules and collections. 'My Favorites' can only be seen by you, and collections saved in 'My Favorites' can remember the last module you were on. You need an account to use 'My Favorites'.

| A lens I own (?)

#### Definition of a lens

##### Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

##### What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

##### Who can create a lens?

Any individual member, a community, or a respected organization.

##### What are tags?

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

| External bookmarks