# Connexions

You are here: Home » Content » Siyavula textbooks: Wiskunde (Graad 11) » Die kwadratiese formule

### Lenses

What is a lens?

#### Definition of a lens

##### Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

##### What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

##### Who can create a lens?

Any individual member, a community, or a respected organization.

##### What are tags?

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

#### Affiliated with (What does "Affiliated with" mean?)

This content is either by members of the organizations listed or about topics related to the organizations listed. Click each link to see a list of all content affiliated with the organization.
• FETWisk

This module and collection are included inLens: Siyavula: Wiskunde (Gr 10 - 12)
By: Siyavula

Module Review Status: Approved
Collection Review Status: Approved

Click the "FETWisk" link to see all content affiliated with them.

Click the tag icon to display tags associated with this content.

### Recently Viewed

This feature requires Javascript to be enabled.

### Tags

(What is a tag?)

These tags come from the endorsement, affiliation, and other lenses that include this content.

Inside Collection:

Collection by: Free High School Science Texts Project. E-mail the author

## Oplossing met die Kwadratiese Formule

Dit is nie altyd moontlik om 'n kwadratiese vergelyking met faktorisering op te los nie en soms is dit langdradig en ingewikkeld om kwadraatsvoltooiing toe te pas. In sulke gevalle kan jy van die kwadratiese formule gebruik maak, 'n metode wat die antwoorde van enige kwadratiese vergelyking oplewer.

Beskou die algemene vorm van 'n kwadratiese funksie:

f ( x ) = a x 2 + b x + c . f ( x ) = a x 2 + b x + c .
(1)

Haal die aa as gemene faktor uit om te kry:

f ( x ) = a ( x 2 + b a x + c a ) . f ( x ) = a ( x 2 + b a x + c a ) .
(2)

Nou moet ons 'n bietjie speurwerk doen om te bepaal hoe om vergelyking 2 na 'n volmaakte vierkant met 'n paar oorblywende terme te omskep. Ons weet dat om 'n volmaakte vierkant te hê:

( m + n ) 2 = m 2 + 2 m n + n 2 ( m + n ) 2 = m 2 + 2 m n + n 2
(3)

en

( m - n ) 2 = m 2 - 2 m n + n 2 ( m - n ) 2 = m 2 - 2 m n + n 2
(4)

Die sleutel is die middelterm aan die regterkant nl. 2×2× die eerste term ×× die tweede term aan die linkerkant. Met vergelyking 2 weet ons die eerste term is xx en die tweede term is b2ab2a. Dit beteken that die tweede term aan die regterkant is 2 b 2 a x2 b 2 a x. Dus,

( x + b 2 a ) 2 = x 2 + 2 b 2 a x + ( b 2 a ) 2 . ( x + b 2 a ) 2 = x 2 + 2 b 2 a x + ( b 2 a ) 2 .
(5)

Nou maak ons gebruik van die feit dat as jy dieselfde hoeveelheid bytel en dan aftrek die uitdrukking dieselfde bly. As ons dus b2a2b2a2 aan die regterkant van vergelyking 2 optel en aftrek kry ons:

f ( x ) = a ( x 2 + b a x + c a ) = a x 2 + b a x + b 2 a 2 - b 2 a 2 + c a = a x + b 2 a 2 - b 2 a 2 + c a = a x + b 2 a 2 + c - b 2 4 a f ( x ) = a ( x 2 + b a x + c a ) = a x 2 + b a x + b 2 a 2 - b 2 a 2 + c a = a x + b 2 a 2 - b 2 a 2 + c a = a x + b 2 a 2 + c - b 2 4 a
(6)

Ons stel f(x)=0f(x)=0 om die wortels te vind, en verkry die volgende:

a ( x + b 2 a ) 2 = b 2 4 a - c a ( x + b 2 a ) 2 = b 2 4 a - c
(7)

Deel nou deur aa en neem die vierkantswortel van beide kante:

x + b 2 a = ± b 2 4 a 2 - c a x + b 2 a = ± b 2 4 a 2 - c a
(8)

Om eindelik vir xx op te los impliseer:

x = - b 2 a ± b 2 4 a 2 - c a = - b 2 a ± b 2 - 4 a c 4 a 2 x = - b 2 a ± b 2 4 a 2 - c a = - b 2 a ± b 2 - 4 a c 4 a 2
(9)

wat verder vereenvoudig kan word tot:

x = - b ± b 2 - 4 a c 2 a x = - b ± b 2 - 4 a c 2 a
(10)

Hierdie is die algemene oplossings vir 'n kwadratiese vergelyking. Let daarop dat daar gewoonlik twee oplossings is, maar dat hul nie noodwendig bestaan nie, afhangende van die uitdrukking b2-4acb2-4ac (onder die vierkantswortel) se teken. Hierdie oplossings word ook die wortels van 'n kwadratiese vergelyking genoem.

### Exercise 1: Gebruik van die kwadratiese formule

Vind die wortels van die funksie f(x)=2x2+3x-7f(x)=2x2+3x-7.

#### Solution

1. Stap 1. Bepaal of die vergelyking gefaktoriseer kan word:

Die uitdrukking kan nie gefaktoriseer word nie. Die algemene kwadratiese formule sal dus gebruik moet word.

2. Stap 2. Identifiseer die koëffisiënte in die vergelyking om in die formule te gebruik:

Vanuit die vergelyking:

a = 2 a = 2
(11)
b = 3 b = 3
(12)
c = - 7 c = - 7
(13)
3. Stap 3. Pas die kwadratiese formule toe :

Skryf altyd eers die formule neer en stel daarna die waardes van a,ba,b en cc in.

x = - b ± b 2 - 4 a c 2 a = - ( 3 ) ± ( 3 ) 2 - 4 ( 2 ) ( - 7 ) 2 ( 2 ) = - 3 ± 65 4 = - 3 ± 65 4 x = - b ± b 2 - 4 a c 2 a = - ( 3 ) ± ( 3 ) 2 - 4 ( 2 ) ( - 7 ) 2 ( 2 ) = - 3 ± 65 4 = - 3 ± 65 4
(14)
4. Stap 4. Skryf die finale antwoord neer:

Die twee wortels van f(x)=2x2+3x-7f(x)=2x2+3x-7 is x=-3+654x=-3+654 en -3-654-3-654.

### Exercise 2: Die gebruik van die kwadratiese formule sonder oplossing

Vind die oplossings vir die kwadratiese vergelyking x2-5x+8=0x2-5x+8=0.

#### Solution

1. Stap 1. Bepaal of die vergelyking gefaktoriseer kan word:

Die uitdrukking kan nie gefaktoriseer word nie. Die algemene kwadratiese formule sal dus gebruik moet word.

2. Stap 2. Identifiseer die koëffisiënte in die vergelyking om in die formule te gebruik:

Vanuit die vergelyking:

a = 1 a = 1
(15)
b = - 5 b = - 5
(16)
c = 8 c = 8
(17)
3. Stap 3. Pas die kwadratiese formule toe:
x = - b ± b 2 - 4 a c 2 a = - ( - 5 ) ± ( - 5 ) 2 - 4 ( 1 ) ( 8 ) 2 ( 1 ) = 5 ± - 7 2 x = - b ± b 2 - 4 a c 2 a = - ( - 5 ) ± ( - 5 ) 2 - 4 ( 1 ) ( 8 ) 2 ( 1 ) = 5 ± - 7 2
(18)
4. Stap 4. Skryf die finale antwoord neer:

Aangesien die uitdrukking onder die vierkantswortel negatief is sal hierdie oplossings nie-reëel wees (-7-7 is nie 'n reële getal nie). Daarom is daar geen reële oplossings vir die kwadratiese vergelyking x2-5x+8=0x2-5x+8=0 nie. Dit beteken dat die grafiek van die funksie f(x)=x2-5x+8f(x)=x2-5x+8 geen xx-afsnitte het nie, maar dat die hele grafiek bokant die xx-as lê.

Figuur 1

### Oplossing met die Kwadratiese Formule

Los op vir tt deur gebruik te maak van die kwadratiese formule.

1. 3 t 2 + t - 4 = 0 3 t 2 + t - 4 = 0
2. t 2 - 5 t + 9 = 0 t 2 - 5 t + 9 = 0
3. 2 t 2 + 6 t + 5 = 0 2 t 2 + 6 t + 5 = 0
4. 4 t 2 + 2 t + 2 = 0 4 t 2 + 2 t + 2 = 0
5. - 3 t 2 + 5 t - 8 = 0 - 3 t 2 + 5 t - 8 = 0
6. - 5 t 2 + 3 t - 3 = 0 - 5 t 2 + 3 t - 3 = 0
7. t 2 - 4 t + 2 = 0 t 2 - 4 t + 2 = 0
8. 9 t 2 - 7 t - 9 = 0 9 t 2 - 7 t - 9 = 0
9. 2 t 2 + 3 t + 2 = 0 2 t 2 + 3 t + 2 = 0
10. t 2 + t + 1 = 0 t 2 + t + 1 = 0

• In al die behandelde voorbeelde is die antwoorde in wortelvorm gelaat, alhoewel dit ook in desimale vorm geskryf kan word met behulp van 'n sakrekenaar. In 'n toets of eksamen, let op die vraag se instruksies of die antwoord in wortelvorm of 'n sekere aantal desimale syfers verlang word.
• Kwadraatsvoltooiing word slegs as oplossingsmetode gebruik wanneer indien spesifiek daarvoor gevra word.

### Gemenge oefeninge

• Probeer altyd om eers die trinomiaal te faktoriseer en, indien nie moontlik nie, gebruik die formule.
• Los sommige probleme met behulp van kwadraatsvoltooiing op en vergelyk dan jou antwoorde met díe wat met ander metodes verkry is.
 1. 24y2+61y-8=024y2+61y-8=0 2. -8y2-16y+42=0-8y2-16y+42=0 3. -9y2+24y-12=0-9y2+24y-12=0 4. -5y2+0y+5=0-5y2+0y+5=0 5. -3y2+15y-12=0-3y2+15y-12=0 6. 49y2+0y-25=049y2+0y-25=0 7. -12y2+66y-72=0-12y2+66y-72=0 8. -40y2+58y-12=0-40y2+58y-12=0 9. -24y2+37y+72=0-24y2+37y+72=0 10. 6y2+7y-24=06y2+7y-24=0 11. 2y2-5y-3=02y2-5y-3=0 12. -18y2-55y-25=0-18y2-55y-25=0 13. -25y2+25y-4=0-25y2+25y-4=0 14. -32y2+24y+8=0-32y2+24y+8=0 15. 9y2-13y-10=09y2-13y-10=0 16. 35y2-8y-3=035y2-8y-3=0 17. -81y2-99y-18=0-81y2-99y-18=0 18. 14y2-81y+81=014y2-81y+81=0 19. -4y2-41y-45=0-4y2-41y-45=0 20. 16y2+20y-36=016y2+20y-36=0 21. 42y2+104y+64=042y2+104y+64=0 22. 9y2-76y+32=09y2-76y+32=0 23. -54y2+21y+3=0-54y2+21y+3=0 24. 36y2+44y+8=036y2+44y+8=0 25. 64y2+96y+36=064y2+96y+36=0 26. 12y2-22y-14=012y2-22y-14=0 27. 16y2+0y-81=016y2+0y-81=0 28. 3y2+10y-48=03y2+10y-48=0 29. -4y2+8y-3=0-4y2+8y-3=0 30. -5y2-26y+63=0-5y2-26y+63=0 31. x2-70=11x2-70=11 32. 2x2-30=22x2-30=2 33. x2-16=2-x2x2-16=2-x2 34. 2y2-98=02y2-98=0 35. 5y2-10=1155y2-10=115 36. 5y2-5=19-y25y2-5=19-y2

## Content actions

PDF | EPUB (?)

### What is an EPUB file?

EPUB is an electronic book format that can be read on a variety of mobile devices.

PDF | EPUB (?)

### What is an EPUB file?

EPUB is an electronic book format that can be read on a variety of mobile devices.

#### Collection to:

My Favorites (?)

'My Favorites' is a special kind of lens which you can use to bookmark modules and collections. 'My Favorites' can only be seen by you, and collections saved in 'My Favorites' can remember the last module you were on. You need an account to use 'My Favorites'.

| A lens I own (?)

#### Definition of a lens

##### Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

##### What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

##### Who can create a lens?

Any individual member, a community, or a respected organization.

##### What are tags?

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

| External bookmarks

#### Module to:

My Favorites (?)

'My Favorites' is a special kind of lens which you can use to bookmark modules and collections. 'My Favorites' can only be seen by you, and collections saved in 'My Favorites' can remember the last module you were on. You need an account to use 'My Favorites'.

| A lens I own (?)

#### Definition of a lens

##### Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

##### What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

##### Who can create a lens?

Any individual member, a community, or a respected organization.

##### What are tags?

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

| External bookmarks