Skip to content Skip to navigation

OpenStax_CNX

You are here: Home » Content » Gradiënt by 'n punt

Navigation

Lenses

What is a lens?

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

This content is ...

Affiliated with (What does "Affiliated with" mean?)

This content is either by members of the organizations listed or about topics related to the organizations listed. Click each link to see a list of all content affiliated with the organization.
  • FETWisk display tagshide tags

    This module is approved and included inLens: Siyavula: Wiskunde (Gr 10 - 12)
    By: Siyavula

    Review Status: Approved

    Click the "FETWisk" link to see all content affiliated with them.

    Click the tag icon tag icon to display tags associated with this content.

Recently Viewed

This feature requires Javascript to be enabled.

Tags

(What is a tag?)

These tags come from the endorsement, affiliation, and other lenses that include this content.
 

Inleiding

In Graad 10 het ons die idee van gemiddelde gradiënt ondersoek and gesien dat die gradiënt van sommige funksies verskillend is by verskillende intervalle. In Graad 11 kyk ons verder na die idee van gemiddelde gradiënt, en stel die idee van 'n gradiënt van 'n kurwe by 'n punt bekend.

Gemiddelde Gradiënt

Ons het gesien dat die gemiddelde gradiënt tussen twee punte op 'n kurwe die gradiënt is van die reguitlyn wat deur twee punte gaan.

Figuur 1: The gemiddelde gradiënt tussen twee punte op 'n kurwe is die gradiënt van die reguitlyn wat deur die twee punte gaan.
Figuur 1 (MG11C14_001.png)

Wat gebeur met die gradiënt as ons die posisie van een punt vasstel en die tweede punt nader aan die vaste punt beweeg?

Ondersoek: Gradiënt by 'n Enkele Punt op 'n Kurwe

Die kurwe gewys is gedefineër deur y=-2x2-5y=-2x2-5. Punt B is vasgestel by koördinate (0, -5). Die posisie van punt A wissel. Voltooi die tabel hieronder deur die yy-koördinate van punt A te bereken vir die gegewe xx-koördinate. Bereken dan die gemiddelde gradiënt tussen punte A en B.

Tabel 1
x A x A y A y A gemiddelde gradiënt
-2    
-1.5    
-1    
-0.5    
0    
0.5    
1    
1.5    
2    
Figuur 2
Figuur 2 (MG11C14_002.png)

Wat gebeur met die gemiddelde gradiënt soos A in die rigting van B beweeg? Wat gebreur met die gemiddelde gradieënt soos A wegbeweeg van B? Wat is die gemiddelde gradiënt wanneer A oorvleuel met B?

In figuur 3 verander die gradiënt van die reguitlyn wat deur punte A en C gaan soos A nader beweeg aan C. By die punt wat A en C oorvleuel gaan die reguitlyn slegs deur een punt op die kurwe. So 'n lyn is bekend as 'n raaklyn aan die kurwe.

Figuur 3: Die gradiënt van die reguitlyn tussen A en C verander soos die punt A between langs die kurwe na C toe. Daar kom 'n punt wat A en C oorvleuel (soos gewys in (c)). By daardie punt is die lyn 'n raaklyn aan die kurwe.
(a)
Figuur 3(a) (MG11C14_003.png)
(b)
Figuur 3(b) (MG11C14_004.png)
(c)
Figuur 3(c) (MG11C14_005.png)
(d)
Figuur 3(d) (MG11C14_006.png)

Ons stel dan die idee bekend van 'n gradiënt by 'n enkele punt op 'n kurwe. Die gradiënt by 'n punt op 'n kurwe is eenvoudig die gradiënt van die raaklyn aan die kurwe by die gegewe punt.

Exercise 1: Gemiddelde Gradiënt

Kry die gemiddelde gradiënt tussen twee punte P(a;g(a))(a;g(a)) en Q(a+h;g(a+h))(a+h;g(a+h)) op die kurwe g(x)=x2g(x)=x2. Kry dan die gemiddelde gradiënt tussen P(2;g(2))(2;g(2)) en Q(4;g(4))(4;g(4)). Laastens, verduidelik wat gebeur met die gemiddelde gradiënt soos P nader beweeg aan Q.

Solution

  1. Stap 1. Benoem die xx-koördinate:
    x 1 = a x 1 = a
    (1)
    x 2 = a + h x 2 = a + h
    (2)
  2. Stap 2. Bepaal die yy -koördinate:

    Deur die funksie g(x)=x2g(x)=x2 te gebruik, kry ons:

    y 1 = g ( a ) = a 2 y 1 = g ( a ) = a 2
    (3)
    y 2 = g ( a + h ) = ( a + h ) 2 = a 2 + 2 a h + h 2 y 2 = g ( a + h ) = ( a + h ) 2 = a 2 + 2 a h + h 2
    (4)
  3. Stap 3. Bereken die gemiddelde gradiënt:
    y 2 - y 1 x 2 - x 1 = ( a 2 + 2 a h + h 2 ) - ( a 2 ) ( a + h ) - ( a ) = a 2 + 2 a h + h 2 - a 2 a + h - a = 2 a h + h 2 h = h ( 2 a + h ) h = 2 a + h y 2 - y 1 x 2 - x 1 = ( a 2 + 2 a h + h 2 ) - ( a 2 ) ( a + h ) - ( a ) = a 2 + 2 a h + h 2 - a 2 a + h - a = 2 a h + h 2 h = h ( 2 a + h ) h = 2 a + h
    (5)

    Die gemiddelde gradiënt tussen P(a;g(a))(a;g(a)) en Q(a+h;g(a+h))(a+h;g(a+h)) op die kurwe g(x)=x2g(x)=x2 is 2a+h2a+h.

  4. Stap 4. Bereken die gemiddelde gradiënt tussen P(2;g(2))(2;g(2)) en Q(4;g(4))(4;g(4)) :

    Ons kan die resultaat in vergelyking 5 gebruik, maar ons sal moet bepaal wat aa en hh is. Ons doen dit deur te kyk na die definisies van P en Q. Die xx-koërdinaat van P is aa en die xx-koördinaat van Q is a+ha+h. Daarom as ons aanneem dat a=2a=2 en a+h=4a+h=4, dan is h=2h=2.

    Dan is die gemiddelde gradiënt

    2 a + h = 2 ( 2 ) + ( 2 ) = 6 2 a + h = 2 ( 2 ) + ( 2 ) = 6
    (6)
  5. Stap 5. Soos P nader beweeg aan Q... :

    soos punt P nader beweeg aan punt Q, word hh kleiner. Dit beteken dat die gemiddelde gradiënt ook kleiner word. As die punt Q oorvleuel met die punt P, is h=0h=0 en die gemiddelde gradiënt word gegee deur 2a2a.

Ons sien nou dat ons die vergelyking kan skryf om die gemiddelde gradiënt op 'n effens anderse manier te bereken. As ons 'n kurwe het gedefineer deur f(x)f(x), dan vir twee punte P en Q met P(a;f(a))(a;f(a)) en Q(a+h;f(a+h))(a+h;f(a+h)), word die gemiddelde gradiënt tussen P en Q gegee deur f(x)f(x):

y 2 - y 1 x 2 - x 1 = f ( a + h ) - f ( a ) ( a + h ) - ( a ) = f ( a + h ) - f ( a ) h y 2 - y 1 x 2 - x 1 = f ( a + h ) - f ( a ) ( a + h ) - ( a ) = f ( a + h ) - f ( a ) h
(7)

Hierdie resultaat is belangrik om die gradiënt te bereken by 'n punt op 'n kurwe en dit sal in groter detail ondersoek word in Graad 12.

Hoofstukoefeninge

    1. Bepaal die gemiddelde gradiënt van die kurwe f(x)=x(x+3)f(x)=x(x+3) tussen x=–5x=–5 en x=–3x=–3.
    2. Sê nou wat jy kan aflei oor die funksie ff tussen x=–5x=–5 en x=–3x=–3.
  1. A(1;3) is 'n punt op f(x)=3x2f(x)=3x2.
    1. Bepaal die gradiënt van die kurwe by punt A.
    2. Bepaal nou die vergelyking van die raaklyn by A.
  2. Given: f(x)=2x2f(x)=2x2.
    1. Bepaal die gemiddelde gradiënt tussen x=-2x=-2 en x=1x=1.
    2. Bepaal die gradiënt van die kurwe van ff waar x=2x=2.

Content actions

Download module as:

Add module to:

My Favorites (?)

'My Favorites' is a special kind of lens which you can use to bookmark modules and collections. 'My Favorites' can only be seen by you, and collections saved in 'My Favorites' can remember the last module you were on. You need an account to use 'My Favorites'.

| A lens I own (?)

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

| External bookmarks