Connexions

You are here: Home » Content » Funksies en Grafieke: Die reguit lyn

Lenses

What is a lens?

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags?

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

Affiliated with (What does "Affiliated with" mean?)

This content is either by members of the organizations listed or about topics related to the organizations listed. Click each link to see a list of all content affiliated with the organization.
• FETWisk

This module is approved and included inLens: Siyavula: Wiskunde (Gr 10 - 12)
By: Siyavula

Review Status: Approved

Click the "FETWisk" link to see all content affiliated with them.

Click the tag icon to display tags associated with this content.

Recently Viewed

This feature requires Javascript to be enabled.

Tags

(What is a tag?)

These tags come from the endorsement, affiliation, and other lenses that include this content.

Funksies en Grafieke: Die reguit lyn

Funksies in die vorm y=ax+qy=ax+q

Funksies met die algemene vorm y=ax+qy=ax+q word reguitlynfunksies genoem. In die vergelyking, y=ax+qy=ax+q, is aa en qq konstantes en het verskillende invloede op die grafiek van die funksie. Die algemene grafiek van so 'n funksie word gegee in Figure 1 vir die funksie f(x)=2x+3f(x)=2x+3.

Ondersoek: Funksies van die vorm y=ax+qy=ax+q

1. Op dieselfde assestelsel, trek die volgende grafieke:
1. a(x)=x-2a(x)=x-2
2. b(x)=x-1b(x)=x-1
3. c(x)=xc(x)=x
4. d(x)=x+1d(x)=x+1
5. e(x)=x+2e(x)=x+2
Gebruik jou resultate om die invloed van verskillende waardes van qq op die resulterende grafiek af te lei.
2. Op dieselfde assestelsel, teken die volgende grafieke:
1. f(x)=-2.xf(x)=-2.x
2. g(x)=-1.xg(x)=-1.x
3. h(x)=0.xh(x)=0.x
4. j(x)=1.xj(x)=1.x
5. k(x)=2.xk(x)=2.x
Gebruik jou resultate om die invloed van verskillende waardes van aa op die resulterende grafiek af te lei.

Jy behoort te vind dat die waarde van aa die helling van die grafiek beïnvloed. Soos aa vermeerder, vermeerder die helling van die grafiek ook. Indien a>0a>0 sal die grafiek vermeerder van links na regs (opwaartse helling). Indien a<0a<0 sal die grafiek verminder van links na regs (afwaartse helling). Dit is hoekom daar na aa verwys word as die helling of die gradiënt van 'n reguitlynfunksie.

Jy behoort ook te vind dat die waarde van qq die punt bepaal waar die grafiek die yy-as sny. Om hierdie rede, staan qq bekend as die y-afsnit.

Die verskillende eienskappe word opgesom in Table 1.

 a > 0 a > 0 a < 0 a < 0 q > 0 q > 0 q < 0 q < 0

Definisieversameling en Waardeversameling

Vir f(x)=ax+qf(x)=ax+q, is die definisieversameling {x:xR}{x:xR}, omdat daar geen waarde is van xRxR waarvoor f(x)f(x) ongedefinieërd is nie.

Die waardeversameling van f(x)=ax+qf(x)=ax+q is ook {f(x):f(x)R}{f(x):f(x)R} omdat daar geen waarde van f(x)Rf(x)R waarvoor f(x)f(x) ongedefinieërd is nie.

Byvoorbeeld, die definisieversameling van g(x)=x-1g(x)=x-1 is {x:xR}{x:xR} omdat daar geen waardes is van xRxR waarvoor g(x)g(x) ongedefinieërd is nie. Die waardeversameling van g(x)g(x) is {g(x):g(x)R}{g(x):g(x)R}.

Afsnitte

Vir funksies van die vorm, y=ax+qy=ax+q word die metode om die afsnitte met die xx- en yy-asse te bereken, uiteengesit.

Die yy-afsnitte word as volg bereken:

y = a x + q y i n t = a ( 0 ) + q = q y = a x + q y i n t = a ( 0 ) + q = q
(1)

Byvoorbeeld, die yy-afsnit van g(x)=x-1g(x)=x-1 word bepaal deur x=0x=0 te stel en dan op te los:

g ( x ) = x - 1 y i n t = 0 - 1 = - 1 g ( x ) = x - 1 y i n t = 0 - 1 = - 1
(2)

Die xx-afsnit word as volg bereken:

y = a x + q 0 = a · x i n t + q a · x i n t = - q x i n t = - q a y = a x + q 0 = a · x i n t + q a · x i n t = - q x i n t = - q a
(3)

Byvoorbeeld, die xx-afsnit van g(x)=x-1g(x)=x-1 word gegee deur y=0y=0 in te stel en dan op te los:

g ( x ) = x - 1 0 = x i n t - 1 x i n t = 1 g ( x ) = x - 1 0 = x i n t - 1 x i n t = 1
(4)

Draaipunte

Die grafiek van 'n reguitlynfunksie het nie draaipunte nie.

Simmetrie-asse

Die grafieke van reguitlynfunksies het gewoonlik nie simmerie-asse nie.

Skets van Grafieke van die vorm f(x)=ax+qf(x)=ax+q

Om die grafieke van die vorm f(x)=ax+qf(x)=ax+q te skets, moet ons die volgende drie eienskappe vind:

1. die teken van aa
2. yy-afsnit
3. xx-afsnit

Slegs twee punte word benodig om 'n reguitlyn te trek. Die maklikste punte is die xx-afsnit (waar die lyn die xx-as sny) en die yy-afsnit.

Byvoorbeeld, skets die grafiek van g(x)=x-1g(x)=x-1. Merk duidelik die afsnitte.

Eerstens bereken ons dat a>0a>0. Dit beteken die grafiek gaan 'n opwaartse helling hê.

Die yy-afsnit word bepaal deur x=0x=0 te stel en is vroeër bereken as yint=-1yint=-1. Die xx-afsnit word bepaal deur y=0y=0 te stel en is vroeër bereken as xint=1xint=1.

Exercise 1: Trek van 'n Reguitlyngrafiek

Teken die grafiek van y=2x+2y=2x+2.

Solution
1. Step 1. Vind die y-afsnit :

Om die y-afsnit te vind, stel x=0x=0.

y = 2 ( 0 ) + 2 = 2 y = 2 ( 0 ) + 2 = 2
(5)
2. Step 2. Vind die x-afsnit :

Om die x-afsnit te kry, stel y=0y=0.

0 = 2 x + 2 2 x = - 2 x = - 1 0 = 2 x + 2 2 x = - 2 x = - 1
(6)
3. Step 3. Teken die grafiek deur die twee koördinate te vind en dan te verbind. :

Afsnitte

1. Skryf die yy-afsnitte neer vir die volgende reguitlyngrafieke:
1. y=xy=x
2. y=x-1y=x-1
3. y=2x-1y=2x-1
4. y+1=2xy+1=2x
Kliek hier vir die oplossing
2. Gee die vergelyking van die grafiek wat hieronder geskets is: Kliek hier vir die oplossing
3. Skets die volgende verbande op dieselfde assestelsel, merk die koördinate van die afsnitte duidelik: x+2y-5=0x+2y-5=0 en 3x-y-1=03x-y-1=0
Kliek hier vir die oplossing

Content actions

PDF | EPUB (?)

What is an EPUB file?

EPUB is an electronic book format that can be read on a variety of mobile devices.

My Favorites (?)

'My Favorites' is a special kind of lens which you can use to bookmark modules and collections. 'My Favorites' can only be seen by you, and collections saved in 'My Favorites' can remember the last module you were on. You need an account to use 'My Favorites'.

| A lens I own (?)

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags?

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

| External bookmarks