# Connexions

You are here: Home » Content » Siyavula textbooks: Wiskunde (Graad 10) [CAPS] » Oplos van kwadratiese vergelykings

• #### Finansiële wiskunde

• Rasionale getalle
• Eksponensiale
• Irrasionale Getalle en Afronding

### Lenses

What is a lens?

#### Definition of a lens

##### Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

##### What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

##### Who can create a lens?

Any individual member, a community, or a respected organization.

##### What are tags?

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

#### Affiliated with (What does "Affiliated with" mean?)

This content is either by members of the organizations listed or about topics related to the organizations listed. Click each link to see a list of all content affiliated with the organization.
• FETWisk

This module and collection are included inLens: Siyavula: Wiskunde (Gr 10 - 12)
By: Siyavula

Module Review Status: Approved
Collection Review Status: Approved

Click the "FETWisk" link to see all content affiliated with them.

Click the tag icon to display tags associated with this content.

### Recently Viewed

This feature requires Javascript to be enabled.

### Tags

(What is a tag?)

These tags come from the endorsement, affiliation, and other lenses that include this content.

Inside Collection:

Collection by: Free High School Science Texts Project. E-mail the author

'n Kwadratiese vergelyking, is 'n vergelyking waar die mag van die veranderlike hoogstens 2 is. Die volgende is voorbeelde van kwadratiese vergelykings.

2 x 2 + 2 x = 1 2 - x 3 x + 1 = 2 x 4 3 x - 6 = 7 x 2 + 2 2 x 2 + 2 x = 1 2 - x 3 x + 1 = 2 x 4 3 x - 6 = 7 x 2 + 2
(1)

Kwadratiese vergelykings verskil van lineêre vergelykings daarin dat 'n lineêre vergelyking slegs een oplossing het, terwyl ‘n kwadratiese vergelyking hoogstens 2 oplossings het. Daar is spesiale gevalle waar 'n kwadratiese vergelyking slegs een oplossing het.

Om 'n kwadratiese vergelyking op te los, herskryf ons dit met 'n 0 aan die een kant van die gelykaanteken en die produk van twee lineêre uitdrukkings, in hakies, aan die anderkant. Ons weet byvoorbeeld dat:

( x + 1 ) ( 2 x - 3 ) = 2 x 2 - x - 3 ( x + 1 ) ( 2 x - 3 ) = 2 x 2 - x - 3
(2)

Om op te los:

2 x 2 - x - 3 = 0 2 x 2 - x - 3 = 0
(3)

moet ons in staat wees om 2x2-x-32x2-x-3 te herskryf as (x+1)(2x-3)(x+1)(2x-3), en ons weet reeds hoe om dit te doen.

### Ondersoek: Faktorisering van 'n Kwadratiese Uitdrukking

1. x + x 2 x + x 2
2. x 2 + 1 + 2 x x 2 + 1 + 2 x
3. x 2 - 4 x + 5 x 2 - 4 x + 5
4. 16 x 2 - 9 16 x 2 - 9
5. 4 x 2 + 4 x + 1 4 x 2 + 4 x + 1

As jy 'n kwadratiese uitdrukking kan faktoriseer, is jy een stap weg daarvan om 'n kwadratiese vergelyking op te los. Byvoorbeeld, x2-3x+2=0x2-3x+2=0 kan geskryf word as (x-1)(x-2)=0(x-1)(x-2)=0. Dit beteken dat x-1=0x-1=0 of x-2=0x-2=0, wat x=1x=1 en x=2x=2 gee as die 2 oplossings van die kwadratiese vergelyking x2-3x+2=0x2-3x+2=0.

### Metode: Oplos van Kwadratiese Vergelykings

1. Deel heel eerste die hele vergelyking deur enige gemene faktore van die koëffisiënte, ten einde 'n vergelyking te kry van die vorm ax2+bx+c=0ax2+bx+c=0 waar aa, bb en cc geen gemeenskaplike faktore het nie. Byvoorbeeld, 2x2+4x+2=02x2+4x+2=0

kan geskryf word as x2+2x+1=0x2+2x+1=0

deur te deel met 2.
2. Skryf ax2+bx+cax2+bx+c in terme van sy faktore (rx+s)(ux+v)(rx+s)(ux+v). Dit beteken (rx+s)(ux+v)=0(rx+s)(ux+v)=0.
3. Wanneer ons die vergelyking geskryf het in die vorm (rx+s)(ux+v)=0(rx+s)(ux+v)=0, volg dit dat die oplossing sal wees x=-srx=-sr of x=-vux=-vu.
4. Vervang elke moontlike waarde van die oplossing in die oorspronklike vergelyking in om te toets of dit 'n geldige oplossing is.

#### Oplossing (wortels) van Kwadratiese Vergelykings

'n Kwadratiese vergelyking het 2 wortels omdat enige een van die 2 waardes die vergelyking kan bevredig.

Figure 1
Khan Akademie video oor vergelykings - 3

#### Exercise 1: Oplos van Kwadratiese Vergelykings

Los op vir xx: 3x2+2x-1=03x2+2x-1=0.

##### Solution
1. Step 1. Kry die faktore van 3x2+2x-13x2+2x-1 :

Ons het gesien die faktore van 3x2+2x-13x2+2x-1 is (x+1)(x+1) and (3x-1)(3x-1).

2. Step 2. Skryf die vergelyking in gefaktoriseerde vorm :
( x + 1 ) ( 3 x - 1 ) = 0 ( x + 1 ) ( 3 x - 1 ) = 0
(4)
3. Step 3. Bepaal die 2 wortels :

Ons het

x + 1 = 0 x + 1 = 0
(5)

of

3 x - 1 = 0 3 x - 1 = 0
(6)

Dus, x=-1x=-1 of x=13x=13.

4. Step 4. Toets die antwoorde: As ons die antwoorde instel in die oorspronklike vergelyking in, vind ons die vergelyking is waar vir beide antwoorde.
5. Step 5. Skryf die finale oplossing :

3x2+2x-1=03x2+2x-1=0


vir x=-1x=-1 of x=13x=13.

Dit mag gebeur dat die vergelyking met die eerste oogopslag nie soos 'n kwadratiese vergelyking lyk nie, maar deur 'n paar bewerkings in een verander kan word. Onthou dat dieselfde bewerking aan elke kant gedoen moet word om die vergelyking geldig (waar) te hou.

Dit mag nodig wees om een of meer van die volgende te doen:

• Vermenigvuldig weerskante: Byvoorbeeld,
ax+b=cxx(ax+b)=x(cx)ax2+bx=cax+b=cxx(ax+b)=x(cx)ax2+bx=c
(7)
• Kry weerskante die resiproke: Dit beteken om beide kante te verhef tot die mag -1-1. Byvoorbeeld,
1ax2+bx=c(1ax2+bx)-1=(c)-1ax2+bx1=1cax2+bx=1c1ax2+bx=c(1ax2+bx)-1=(c)-1ax2+bx1=1cax2+bx=1c
(8)
• Kwadreer weerskante: Dit beteken om weerskante te verhef tot die mag 2. Byvoorbeeld,
ax2+bx=c(ax2+bx)2=c2ax2+bx=c2ax2+bx=c(ax2+bx)2=c2ax2+bx=c2
(9)

Hierdie strategieë kan op verskillende wyses gekombineer word en die sekerste manier om jou intuïsie te ontwikkel oor wat die beste ding is om te doen, is om te oefen. 'n Gekombineerde stel bewerkings kan byvoorbeeld wees:

1 a x 2 + b x = c ( 1 a x 2 + b x ) - 1 = ( c ) - 1 ( kry weerskante die resiprook ) a x 2 + b x 1 = 1 c a x 2 + b x = 1 c ( a x 2 + b x ) 2 = ( 1 c ) 2 ( kwadreer weerskante ) a x 2 + b x = 1 c 2 1 a x 2 + b x = c ( 1 a x 2 + b x ) - 1 = ( c ) - 1 ( kry weerskante die resiprook ) a x 2 + b x 1 = 1 c a x 2 + b x = 1 c ( a x 2 + b x ) 2 = ( 1 c ) 2 ( kwadreer weerskante ) a x 2 + b x = 1 c 2
(10)

#### Exercise 2: Oplos van Kwadratiese Vergelykings

Los op vir xx: x+2=xx+2=x.

##### Solution
1. Step 1. Kwadreer beide kante van die vergelyking :

Beide kante van die vergelyking behoort gekwadreer te word om die vierkantswortelteken te verwyder.

x + 2 = x 2 x + 2 = x 2
(11)
2. Step 2. Skryf die vergelyking in die vorm ax2+bx+c=0ax2+bx+c=0 :
x + 2 = x 2 ( trek x 2 af van beide kante ) x + 2 - x 2 = 0 ( deel weerskante deur - 1 ) - x - 2 + x 2 = 0 x 2 - x - 2 = 0 x + 2 = x 2 ( trek x 2 af van beide kante ) x + 2 - x 2 = 0 ( deel weerskante deur - 1 ) - x - 2 + x 2 = 0 x 2 - x - 2 = 0
(12)
3. Step 3. Faktoriseer die kwadratiese drieterm :
x 2 - x - 2 x 2 - x - 2
(13)

Die faktore van x2-x-2x2-x-2 is (x-2)(x+1)(x-2)(x+1).

4. Step 4. Skryf die vergelyking met die faktore :
( x - 2 ) ( x + 1 ) = 0 ( x - 2 ) ( x + 1 ) = 0
(14)
5. Step 5. Bepaal die 2 oplossings :

Ons het

x + 1 = 0 x + 1 = 0
(15)

of

x - 2 = 0 x - 2 = 0
(16)

Dus, x=-1x=-1 of x=2x=2.

6. Step 6. Kontroleer of die oplossings geldig is :

Vervang x=-1x=-1


in die oorspronklike vergelyking x+2=xx+2=x:

LK = ( - 1 ) + 2 = 1 = 1 maar RK = ( - 1 ) LK = ( - 1 ) + 2 = 1 = 1 maar RK = ( - 1 )
(17)

Daarom LK RK. Die twee kante van 'n vergelyking moet altyd balanseer; 'n moontlike oplossing wat NIE die vergelyking bevredig nie, is nie geldig nie. In hierdie geval balanseer die twee kante van die vergelyking nie.

Dus x-1x-1.

Stel nou x=2x=2 in die oorspronklike vergelyking in x+2=xx+2=x:

LK = 2 + 2 = 4 = 2 en RK = 2 LK = 2 + 2 = 4 = 2 en RK = 2
(18)

Dus, LK = RK

Dus x=2x=2 is die enigste geldige oplossing.

7. Step 7. Skryf die finale antwoord neer :

x+2=xx+2=x vir x=2x=2 alleenlik.

#### Exercise 3: Oplos van Kwadratiese Vergelykings

Los die vergelyking op: x2+3x-4=0x2+3x-4=0.

##### Solution
1. Step 1. Kontroleer of die vergelyking in die vorm ax2+bx+c=0ax2+bx+c=0 :

Die vergelyking is in die verlangde vorm, met a=1a=1.

2. Step 2. Faktoriseer die kwadratiese drieterm :

Jy benodig die faktore van 1 en 4 sodat die middelterm +3+3 is. So, die faktore is:

( x - 1 ) ( x + 4 ) ( x - 1 ) ( x + 4 )

3. Step 3. Los die kwadratiese vergelyking op :
x 2 + 3 x - 4 = ( x - 1 ) ( x + 4 ) = 0 x 2 + 3 x - 4 = ( x - 1 ) ( x + 4 ) = 0
(19)

Dus x=1x=1 of x=-4x=-4.

4. Step 4. Toets die oplossings:
12+3(1)-4=012+3(1)-4=0
(20)
(-4)2+3(-4)-4=0(-4)2+3(-4)-4=0
(21)

Beide oplossings is geldig.

5. Step 5. Gee die finale oplossing :

Dus, die oplossing is x=1x=1 of x=-4x=-4.

#### Exercise 4: Oplos van Kwadratiese Vergelykings

Vind die wortels van die kwadratiese vergelyking 0=-2x2+4x-20=-2x2+4x-2.

##### Solution
1. Step 1. Bepaal of die vergelyking in die vorm ax2+bx+c=0ax2+bx+c=0 is met geen gemeenskaplike faktore :

Daar is 'n gemeenskaplike faktor: -2. Dus, deel weerskante van die vergelyking deur -2.

- 2 x 2 + 4 x - 2 = 0 x 2 - 2 x + 1 = 0 - 2 x 2 + 4 x - 2 = 0 x 2 - 2 x + 1 = 0
(22)
2. Step 2. Faktoriseer x2-2x+1x2-2x+1 :

Die middelterm is negatief. Dus, die faktore is (x-1)(x-1)(x-1)(x-1).

As ons uitvermenigvuldig (x-1)(x-1)(x-1)(x-1), kry ons x2-2x+1x2-2x+1.

3. Step 3. Los die kwadratiese vergelyking op :
x 2 - 2 x + 1 = ( x - 1 ) ( x - 1 ) = 0 x 2 - 2 x + 1 = ( x - 1 ) ( x - 1 ) = 0
(23)

In hierdie geval is die kwadratiese uitdrukking 'n volkome vierkant, so daar is net een oplossing vir xx: x=1x=1.

4. Step 4. Toets die oplossing:

-2(1)2+4(1)-2=0-2(1)2+4(1)-2=0

5. Step 5. Skryf die finale oplossing neer :

Die wortel van 0=-2x2+4x-20=-2x2+4x-2 is x=1x=1.

1. Los op vir xx: (3x+2)(3x-4)=0(3x+2)(3x-4)=0

Kliek hier vir die oplossing
2. Los op vir xx: (5x-9)(x+6)=0(5x-9)(x+6)=0

Kliek hier vir die oplossing
3. Los op vir xx: (2x+3)(2x-3)=0(2x+3)(2x-3)=0

Kliek hier vir die oplossing
4. Los op vir xx: (2x+1)(2x-9)=0(2x+1)(2x-9)=0

Kliek hier vir die oplossing
5. Los op vir xx: (2x-3)(2x-3)=0(2x-3)(2x-3)=0

Kliek hier vir die oplossing
6. Los op vir xx: 20x+25x2=020x+25x2=0

Kliek hier vir die oplossing
7. Los op vir xx: 4x2-17x-77=04x2-17x-77=0

Kliek hier vir die oplossing
8. Los op vir xx: 2x2-5x-12=02x2-5x-12=0

Kliek hier vir die oplossing
9. Los op vir xx: -75x2+290x-240=0-75x2+290x-240=0

Kliek hier vir die oplossing
10. Los op vir xx: 2x=13x2-3x+14232x=13x2-3x+1423

Kliek hier vir die oplossing
11. Los op vir xx: x2-4x=-4x2-4x=-4

Kliek hier vir die oplossing
12. Los op vir xx: -x2+4x-6=4x2-5x+3-x2+4x-6=4x2-5x+3

Kliek hier vir die oplossing
13. Los op vir xx: x2=3xx2=3x

Kliek hier vir die oplossing
14. Los op vir xx: 3x2+10x-25=03x2+10x-25=0

Kliek hier vir die oplossing
15. Los op vir xx: x2-x+3x2-x+3


Kliek hier vir die oplossing
16. Los op vir xx: x2-4x+4=0x2-4x+4=0

Kliek hier vir die oplossing
17. Los op vir xx: x2-6x=7x2-6x=7

Kliek hier vir die oplossing
18. Los op vir xx: 14x2+5x=614x2+5x=6

Kliek hier vir die oplossing
19. Los op vir xx: 2x2-2x=122x2-2x=12

Kliek hier vir die oplossing
20. Los op vir xx: 3x2+2y-6=x2-x+23x2+2y-6=x2-x+2

Kliek hier vir die oplossing

## Content actions

PDF | EPUB (?)

### What is an EPUB file?

EPUB is an electronic book format that can be read on a variety of mobile devices.

PDF | EPUB (?)

### What is an EPUB file?

EPUB is an electronic book format that can be read on a variety of mobile devices.

#### Collection to:

My Favorites (?)

'My Favorites' is a special kind of lens which you can use to bookmark modules and collections. 'My Favorites' can only be seen by you, and collections saved in 'My Favorites' can remember the last module you were on. You need an account to use 'My Favorites'.

| A lens I own (?)

#### Definition of a lens

##### Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

##### What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

##### Who can create a lens?

Any individual member, a community, or a respected organization.

##### What are tags?

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

| External bookmarks

#### Module to:

My Favorites (?)

'My Favorites' is a special kind of lens which you can use to bookmark modules and collections. 'My Favorites' can only be seen by you, and collections saved in 'My Favorites' can remember the last module you were on. You need an account to use 'My Favorites'.

| A lens I own (?)

#### Definition of a lens

##### Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

##### What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

##### Who can create a lens?

Any individual member, a community, or a respected organization.

##### What are tags?

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

| External bookmarks