Connexions

You are here: Home » Content » Siyavula textbooks: Wiskunde (Graad 10) [CAPS] » Eksponensiële vergelykings

Lenses

What is a lens?

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags?

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

Affiliated with (What does "Affiliated with" mean?)

This content is either by members of the organizations listed or about topics related to the organizations listed. Click each link to see a list of all content affiliated with the organization.
• FETWisk

This module and collection are included inLens: Siyavula: Wiskunde (Gr 10 - 12)
By: Siyavula

Module Review Status: Approved
Collection Review Status: Approved

Click the "FETWisk" link to see all content affiliated with them.

Click the tag icon to display tags associated with this content.

Recently Viewed

This feature requires Javascript to be enabled.

Tags

(What is a tag?)

These tags come from the endorsement, affiliation, and other lenses that include this content.

Inside Collection:

Collection by: Free High School Science Texts Project. E-mail the author

Eksponensiële vergelykings

Ekponensiële Vergelykings van die vorm ka(x+p)=mka(x+p)=m

Eksponensiële vergelykings het in die algemeen die veranderlike in die mag. Die volgende is voorbeelde van eksponensiële vergelykings:

2 x = 1 2 - x 3 x + 1 = 2 4 3 - 6 = 7 x + 2 2 x = 1 2 - x 3 x + 1 = 2 4 3 - 6 = 7 x + 2
(1)

Jy behoort reeds vertroud te wees met eksponensiële notasie. Oplos van eksponensiële vergelykings is eenvoudig, solank ons onthou hoe om die eksponentwette toe te pas.

Ondersoek: Oplos van Eksponensiële Vergelykings

Los die volgende vergelykings op deur die tabel te voltooi:

 2 x = 2 2 x = 2 x x -3 -2 -1 0 1 2 3 2 x 2 x
 3 x = 9 3 x = 9 x x -3 -2 -1 0 1 2 3 3 x 3 x
 2 x + 1 = 8 2 x + 1 = 8 x x -3 -2 -1 0 1 2 3 2 x + 1 2 x + 1

Algebraïese Oplossing

Definition 1: Gelykheid van Eksponensiële Funksies

As aa 'n positiewe getal is so dat a>0a>0, (behalwe wanneer a=1a=1


) dan:

a x = a y a x = a y
(2)

as en slegs as:

x = y x = y
(3)
(As a=1a=1, dan kan xx en yy verskil.)

Dit beteken dat indien ons al die terme met dieselfde grondtal kan skryf, kan ons die eksponensiële vergelykings oplos deur die eksponente gelyk te stel. Neem byvoorbeeld die vergelyking 3x+1=93x+1=9. Dit kan geskryf word as:

3 x + 1 = 3 2 3 x + 1 = 3 2
(4)

Aangesien die grondtalle gelyk is (aan 3), weet ons dat die eksponente gelyk moet wees. Daarom kan ons skryf:

x + 1 = 2 x + 1 = 2
(5)

Dit gee:

x = 1 x = 1
(6)

Metode: Oplos van Eksponensiële Vergelykings

1. Probeer om al die terme met dieselfde grondtal te skryf.
2. Stel die eksponente van die grondtalle van die LK en RK gelyk.
3. Los die vergelyking wat in die vorige stap verkry is, op.
4. Bevestig die antwoorde.
Ondersoek : Eksponensiële Getalle

Skryf die volgende met dieselfde grondtal. Die grondtal is eerste in die lys. Byvoorbeeld in die lys 2, 4, 8, is die grondtal twee(2) en ons kan 4 skryf as 2222.

1. 2,4,8,16,32,64,128,512,1024
2. 3,9,27,81,243
3. 5,25,125,625
4. 13,169
5. 2x2x, 4x24x2, 8x38x3, 49x849x8
Exercise 1: Oplos van Eksponensiële Vergelykings

Los op vir xx: 2x=22x=2

Solution
1. Step 1. Probeer al die terme skryf met dieselfde grondtal :

Al die terme word geskryf met dieselfde grondtal:

2 x = 2 1 2 x = 2 1
(7)
2. Step 2. Stel die eksponente gelyk :
x = 1 x = 1
(8)
3. Step 3. Toets jou antwoord :
LK = 2 x = 2 1 = 2 RK = 2 1 = 2 = LK LK = 2 x = 2 1 = 2 RK = 2 1 = 2 = LK
(9)

Aangesien beide kante van die vergelyking dieselfde is, is die antwoord korrek.

4. Step 4. Skryf die finale antwoord :
x = 1 x = 1
(10)

is die oplossing van 2x=22x=2.

Exercise 2: Oplos van Eksponensiële Vergelykings

Los op:

2 x + 4 = 4 2 x 2 x + 4 = 4 2 x
(11)
Solution
1. Step 1. Probeer om al die terme met dieselfde grondtal te skryf :
2 x + 4 = 4 2 x 2 x + 4 = 2 2 ( 2 x ) 2 x + 4 = 2 4 x 2 x + 4 = 4 2 x 2 x + 4 = 2 2 ( 2 x ) 2 x + 4 = 2 4 x
(12)
2. Step 2. Stel die eksponenete gelyk :
x + 4 = 4 x x + 4 = 4 x
(13)
3. Step 3. Los op vir xx :
x + 4 = 4 x x - 4 x = - 4 - 3 x = - 4 x = - 4 - 3 x = 4 3 x + 4 = 4 x x - 4 x = - 4 - 3 x = - 4 x = - 4 - 3 x = 4 3
(14)
4. Step 4. Toets jou antwoord :
LK = 2 x + 4 = 2 ( 4 3 + 4 ) = 2 16 3 = ( 2 16 ) 1 3 RK = 4 2 x = 4 2 ( 4 3 ) = 4 8 3 = ( 4 8 ) 1 3 = ( ( 2 2 ) 8 ) 1 3 = ( 2 16 ) 1 3 = LK LK = 2 x + 4 = 2 ( 4 3 + 4 ) = 2 16 3 = ( 2 16 ) 1 3 RK = 4 2 x = 4 2 ( 4 3 ) = 4 8 3 = ( 4 8 ) 1 3 = ( ( 2 2 ) 8 ) 1 3 = ( 2 16 ) 1 3 = LK
(15)

Aangesien beide kante dieselfde is, is die oplossing korrek.

5. Step 5. Skryf die finale antwoord :
x = 4 3 x = 4 3
(16)

is die oplossing van 2x+4=42x2x+4=42x.

Oplos van Eksponensiële Vergelykings
1. Los die volgende eksponensiële vergelykings op:
1. 2x+5=252x+5=25
2. 32x+1=3332x+1=33
3. 52x+2=5352x+2=53
4. 65-x=61265-x=612
5. 64x+1=162x+564x+1=162x+5
6. 125x=5125x=5
Kliek hier vir die oplossing
2. Los op 39x-2=2739x-2=27
Kliek hier vir die oplossing
3. Los op vir kk: 81k+2=27k+481k+2=27k+4
Kliek hier vir die oplossing
4. Die groei van alge in 'n poel kan gemodelleer word met die funksie f(t)=2tf(t)=2t. Vind die waarde van tt sodat f(t)=128f(t)=128

Kliek hier vir die oplossing
5. Los op vir xx: 25(1-2x)=5425(1-2x)=54

Kliek hier vir die oplossing
6. Los op vir xx: 27x×9x-2=127x×9x-2=1

Kliek hier vir die oplossing

Content actions

PDF | EPUB (?)

What is an EPUB file?

EPUB is an electronic book format that can be read on a variety of mobile devices.

PDF | EPUB (?)

What is an EPUB file?

EPUB is an electronic book format that can be read on a variety of mobile devices.

Collection to:

My Favorites (?)

'My Favorites' is a special kind of lens which you can use to bookmark modules and collections. 'My Favorites' can only be seen by you, and collections saved in 'My Favorites' can remember the last module you were on. You need an account to use 'My Favorites'.

| A lens I own (?)

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags?

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

| External bookmarks

Module to:

My Favorites (?)

'My Favorites' is a special kind of lens which you can use to bookmark modules and collections. 'My Favorites' can only be seen by you, and collections saved in 'My Favorites' can remember the last module you were on. You need an account to use 'My Favorites'.

| A lens I own (?)

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags?

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

| External bookmarks