Skip to content Skip to navigation

OpenStax_CNX

You are here: Home » Content » Procesos Aleatorios

Navigation

Recently Viewed

This feature requires Javascript to be enabled.
 

Procesos Aleatorios

Module by: José Miguel Hobaica Alvarado. E-mail the author

Summary: Concepto de proceso aleatorio, procesos estacionarios y ergódicos.

Un Proceso Aleatorio se define como el conjunto de señales provenientes de realizar un determinado experimento o de un evento de la naturaleza. La naturaleza aleatoria del experimento proviene del desconocimiento de cuál de las señales se obtendrá al realizar el experimento. Para caracterizar los Procesos Aleatorios se definen diversas variables aleatorias como la secuencia de valores de las diversas señales evaluadas en tiempos específicos. Así se puede hablar de x(t1), x(t2), etc. Procesos Aleatorios pueden ser continuos o discretos. Los casos especiales para Procesos Aleatorios mayormente utilizados en el ámbito de las comunicaciones son los Procesos Estacionarios y los Procesos Ergódicos.

Función de Densidad de Probabilidades

La Función de Densidad de Probabilidades es una función que, al integrarse entre un límite inferior (L1) y un límite superior (L2), indica la probabilidad de que la variable aleatoria tome valores entre L1 y L2; el área total definida por la función de densidad de probabilidades es igual a 1. Existen varios tipos de distribución, como uniforme, gaussiana, exponencial, entre otras. La figura 1 muestra la función de densidad de probabilidades para una distribución gaussiana y una distribución uniforme respectivamente, el área pintada en azul claro representa el valor de la probabilidad de que la variable tome valores entre L1 y L2:

Figura 1: Función de Densidad de Probabilidades Gaussiana y Uniforme
Figura 1 (Imagen 78.png)

El concepto de función de densidad de probabilidades puede generalizarse a más de una variable, convirtiéndose en una función n-dimensional denominada Función de Densidad de Probabilidades Conjunta.

Procesos Estacionarios

Si la función de densidad de probabilidades aplicada a una señal aleatoria en cierto instante es igual si la misma se desplaza cualquier valor de tiempo, se dice que representa un proceso estacionario de primer orden, resumiendo:

fdp x ( t ) = fdp x ( t + τ ) fdp x ( t ) = fdp x ( t + τ ) size 12{ ital "fdp" left (x \( t \) right )= ital "fdp" left (x \( t+τ \) right )} {}
(1)

Tomándose en cuenta dos variables aleatorias de un mismo proceso: x(t1) y x(t2), si la función de densidad de probabilidades conjunta aplicada a ambas variables aleatorias es igual si para un desplazamiento de tiempo cualquiera, se dice que el proceso es estacionario de segundo orden:

fdp x 1 ( t ) , x 2 ( t ) = fdp x 1 ( t + τ ) , x 2 ( t + τ ) fdp x 1 ( t ) , x 2 ( t ) = fdp x 1 ( t + τ ) , x 2 ( t + τ ) size 12{ ital "fdp" left (x rSub { size 8{1} } \( t \) ,x rSub { size 8{2} } \( t \) right )= ital "fdp" left (x rSub { size 8{1} } \( t+τ \) ,x rSub { size 8{2} } \( t+τ \) right )} {}
(2)

En general, se dice que un proceso es estacionario de orden N si se cumple que:

fdp x 1 ( t ) , x 2 ( t ) . . . x N ( t ) = fdp x 1 ( t + τ ) , x 2 ( t + τ ) . . . x N ( t + τ ) fdp x 1 ( t ) , x 2 ( t ) . . . x N ( t ) = fdp x 1 ( t + τ ) , x 2 ( t + τ ) . . . x N ( t + τ ) size 12{ ital "fdp" left (x rSub { size 8{1} } \( t \) ,x rSub { size 8{2} } \( t \) "." "." "." x rSub { size 8{N} } \( t \) right )= ital "fdp" left (x rSub { size 8{1} } \( t+τ \) ,x rSub { size 8{2} } \( t+τ \) "." "." "." x rSub { size 8{N} } \( t+τ \) right )} {}
(3)

Cualquier proceso estacionario de cierto orden, será estacionario en órdenes inferiores.

Procesos Ergódicos

Un proceso aleatorio es ergódico respecto al primer momento si el promedio estadístico (o valor esperado E[x(t)]) y el promedio temporal (<x(t)>) coinciden; resumiendo:

x ( t ) fdp x ( t ) dx ( t ) = lim T 1 T T x ( t ) d ( t ) x ( t ) fdp x ( t ) dx ( t ) = lim T 1 T T x ( t ) d ( t ) size 12{ Int cSub { size 8{ - infinity } } cSup { size 8{ infinity } } {x \( t \) ital "fdp" left (x \( t \) right ) ital "dx" \( t \) } = {"lim"} cSub { size 8{T rightarrow infinity } } { {1} over {T} } Int cSub { size 8{T} } {x \( t \) d \( t \) } } {}
(4)

Generalizando, se define la ergodicidad en orden N:

x N ( t ) fdp x ( t ) dx ( t ) = lim T 1 T T x N ( t ) d ( t ) x N ( t ) fdp x ( t ) dx ( t ) = lim T 1 T T x N ( t ) d ( t ) size 12{ Int cSub { size 8{ - infinity } } cSup { size 8{ infinity } } {x rSup { size 8{N} } \( t \) ital "fdp" left (x \( t \) right ) ital "dx" \( t \) } = {"lim"} cSub { size 8{T rightarrow infinity } } { {1} over {T} } Int cSub { size 8{T} } {x rSup { size 8{N} } \( t \) d \( t \) } } {}
(5)

Cualquier proceso ergódico de cierto orden, es estacionario en ese mismo orden, además será ergódico en órdenes inferiores. Para procesos ergódicos de segundo orden se cumple que:

  • El nivel DC de la señal es igual al 1er momento: x(t)x(t) size 12{ langle x \( t \) rangle } {}
  • La potencia promedio total de la señal es igual al 2do momento: x2(t)x2(t) size 12{ langle x rSup { size 8{2} } \( t \) rangle } {}
  • La potencia AC de la señal se conoce como varianza: x2(t)x(t)2x2(t)x(t)2 size 12{ langle x rSup { size 8{2} } \( t \) rangle - langle x \( t \) rangle rSup { size 8{2} } } {}

Autocorrelación

La Autocorrelación es una función que indica la relación que tiene el valor que toma una señal en un momento específico con sus vecinos temporales. El concepto de Autocorrelación se aplica para señales determinísticas y aleatorias aunque para estas últimas es una herramienta insustituible si el Proceso es Ergódico; la expresión para la misma corresponde con el valor esperado de la multiplicación de la señal en un tiempo t1 por la misma señal en un tiempo t2:

x = E x ( t 1 ) x ( t 2 ) = E x ( t ) x ( t + τ ) x = E x ( t 1 ) x ( t 2 ) = E x ( t ) x ( t + τ ) size 12{ Re rSub { size 8{x} } =E left [x \( t rSub { size 8{1} } \) x \( t rSub { size 8{2} } \) right ]=E left [x \( t \) x \( t+τ \) right ]} {}
(6)

La variable τ de la función de autocorrelación hace referencia a la diferencia entre los instantes de tiempo involucrados t1 y t2. Si el proceso es ergódico, puede sustituirse la expresión para el valor esperado por la expresión para el promedio temporal como indica la ecuación 4, quedando así una expresión determinística:

x ( τ ) = lim T 1 T T x ( t ) x ( t τ ) d ( t ) x ( τ ) = lim T 1 T T x ( t ) x ( t τ ) d ( t ) size 12{ Re rSub { size 8{x} } \( τ \) = {"lim"} cSub { size 8{T rightarrow infinity } } { {1} over {T} } Int cSub { size 8{T} } {x \( t \) x \( t - τ \) d \( t \) } } {}
(7)

Densidad Espectral de Potencia (DEP):

La DEP de una señal indica cómo está distribuida la potencia de la señal en función de la frecuencia. Para Procesos Ergódicos corresponde con la Transformada de Fourier de la función de autocorrelación y su área coincide con la potencia promedio total de la señal, y coincide a su vez la autocorrelación en τ=0.

Content actions

Download module as:

PDF | EPUB (?)

What is an EPUB file?

EPUB is an electronic book format that can be read on a variety of mobile devices.

Downloading to a reading device

For detailed instructions on how to download this content's EPUB to your specific device, click the "(?)" link.

| More downloads ...

Add module to:

My Favorites (?)

'My Favorites' is a special kind of lens which you can use to bookmark modules and collections. 'My Favorites' can only be seen by you, and collections saved in 'My Favorites' can remember the last module you were on. You need an account to use 'My Favorites'.

| A lens I own (?)

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

| External bookmarks