
Connexions module: m42144 1

Satellites and Kepler's Laws: An

Argument for Simplicity
∗

OpenStax College

This work is produced by The Connexions Project and licensed under the

Creative Commons Attribution License †

Abstract

• State Kepler's laws of planetary motion.
• Derive the third Kepler's law for circular orbits.
• Discuss the Ptolemaic model of the universe.

Examples of gravitational orbits abound. Hundreds of arti�cial satellites orbit Earth together with
thousands of pieces of debris. The Moon's orbit about Earth has intrigued humans from time immemorial.
The orbits of planets, asteroids, meteors, and comets about the Sun are no less interesting. If we look further,
we see almost unimaginable numbers of stars, galaxies, and other celestial objects orbiting one another and
interacting through gravity.

All these motions are governed by gravitational force, and it is possible to describe them to various
degrees of precision. Precise descriptions of complex systems must be made with large computers. However,
we can describe an important class of orbits without the use of computers, and we shall �nd it instructive
to study them. These orbits have the following characteristics:

1. A small mass m orbits a much larger mass M . This allows us to view the motion as if M were
stationary�in fact, as if from an inertial frame of reference placed on M �without signi�cant error.
Mass m is the satellite of M , if the orbit is gravitationally bound.

2. The system is isolated from other masses. This allows us to neglect any small e�ects due to outside
masses.

The conditions are satis�ed, to good approximation, by Earth's satellites (including the Moon), by objects
orbiting the Sun, and by the satellites of other planets. Historically, planets were studied �rst, and there is
a classical set of three laws, called Kepler's laws of planetary motion, that describe the orbits of all bodies
satisfying the two previous conditions (not just planets in our solar system). These descriptive laws are named
for the German astronomer Johannes Kepler (1571�1630), who devised them after careful study (over some
20 years) of a large amount of meticulously recorded observations of planetary motion done by Tycho Brahe
(1546�1601). Such careful collection and detailed recording of methods and data are hallmarks of good
science. Data constitute the evidence from which new interpretations and meanings can be constructed.
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1 Kepler's Laws of Planetary Motion

Kepler's First Law
The orbit of each planet about the Sun is an ellipse with the Sun at one focus.

Figure 1: (a) An ellipse is a closed curve such that the sum of the distances from a point on the curve
to the two foci (f1 and f2) is a constant. You can draw an ellipse as shown by putting a pin at each
focus, and then placing a string around a pencil and the pins and tracing a line on paper. A circle is a
special case of an ellipse in which the two foci coincide (thus any point on the circle is the same distance
from the center). (b) For any closed gravitational orbit, m follows an elliptical path with M at one focus.
Kepler's �rst law states this fact for planets orbiting the Sun.

Kepler's Second Law
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Each planet moves so that an imaginary line drawn from the Sun to the planet sweeps out equal areas
in equal times (see Figure 2).

Kepler's Third Law
The ratio of the squares of the periods of any two planets about the Sun is equal to the ratio of the cubes

of their average distances from the Sun. In equation form, this is

T 2
1

T 2
2

=
r 3
1

r 3
2

, (1)

where T is the period (time for one orbit) and r is the average radius. This equation is valid only for
comparing two small masses orbiting the same large one. Most importantly, this is a descriptive equation
only, giving no information as to the cause of the equality.

Figure 2: The shaded regions have equal areas. It takes equal times for m to go from A to B, from
C to D, and from E to F. The mass m moves fastest when it is closest to M . Kepler's second law was
originally devised for planets orbiting the Sun, but it has broader validity.

Note again that while, for historical reasons, Kepler's laws are stated for planets orbiting the Sun, they
are actually valid for all bodies satisfying the two previously stated conditions.

Example 1: Find the Time for One Orbit of an Earth Satellite
Given that the Moon orbits Earth each 27.3 d and that it is an average distance of 3.84 × 108 m
from the center of Earth, calculate the period of an arti�cial satellite orbiting at an average altitude
of 1500 km above Earth's surface.
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Strategy
The period, or time for one orbit, is related to the radius of the orbit by Kepler's third law,

given in mathematical form in
T 2

1
T 2

2
= r 3

1
r 3
2
. Let us use the subscript 1 for the Moon and the subscript

2 for the satellite. We are asked to �nd T2. The given information tells us that the orbital radius of
the Moon is r1 = 3.84× 108 m, and that the period of the Moon is T1 = 27.3 d. The height of the
arti�cial satellite above Earth's surface is given, and so we must add the radius of Earth (6380 km)
to get r2 = (1500 + 6380) km = 7880 km. Now all quantities are known, and so T2 can be found.

Solution
Kepler's third law is

T 2
1

T 2
2

=
r 3
1

r 3
2

. (2)

To solve for T2, we cross-multiply and take the square root, yielding

T 2
2 = T 2

1

(
r2
r1

)3

(3)

T2 = T1

(
r2
r1

)3/2

. (4)

Substituting known values yields

T2 = 27.3 d× 24.0 h
d ×

(
7880 km

3.84×105 km

)3/2

= 1.93 h.
(5)

Discussion This is a reasonable period for a satellite in a fairly low orbit. It is interesting that any
satellite at this altitude will orbit in the same amount of time. This fact is related to the condition
that the satellite's mass is small compared with that of Earth.

People immediately search for deeper meaning when broadly applicable laws, like Kepler's, are discovered. It
was Newton who took the next giant step when he proposed the law of universal gravitation. While Kepler
was able to discover what was happening, Newton discovered that gravitational force was the cause.

2 Derivation of Kepler's Third Law for Circular Orbits

We shall derive Kepler's third law, starting with Newton's laws of motion and his universal law of gravitation.
The point is to demonstrate that the force of gravity is the cause for Kepler's laws (although we will only
derive the third one).

Let us consider a circular orbit of a small mass m around a large mass M , satisfying the two conditions
stated at the beginning of this section. Gravity supplies the centripetal force to mass m. Starting with
Newton's second law applied to circular motion,

Fnet = mac = m
v2

r
. (6)

The net external force on mass m is gravity, and so we substitute the force of gravity for Fnet:

G
mM

r2
= m

v2

r
. (7)

The mass m cancels, yielding

G
M

r
= v2. (8)
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The fact that m cancels out is another aspect of the oft-noted fact that at a given location all masses fall
with the same acceleration. Here we see that at a given orbital radius r, all masses orbit at the same speed.
(This was implied by the result of the preceding worked example.) Now, to get at Kepler's third law, we
must get the period T into the equation. By de�nition, period T is the time for one complete orbit. Now
the average speed v is the circumference divided by the period�that is,

v =
2πr
T

. (9)

Substituting this into the previous equation gives

G
M

r
=

4π2r2

T 2
. (10)

Solving for T 2 yields

T 2 =
4π2

GM
r3. (11)

Using subscripts 1 and 2 to denote two di�erent satellites, and taking the ratio of the last equation for
satellite 1 to satellite 2 yields

T 2
1

T 2
2

=
r 3
1

r 3
2

. (12)

This is Kepler's third law. Note that Kepler's third law is valid only for comparing satellites of the same
parent body, because only then does the mass of the parent body M cancel.

Now consider what we get if we solve T 2 = 4π2

GMr
3 for the ratio r3/T 2. We obtain a relationship that can

be used to determine the mass M of a parent body from the orbits of its satellites:

r3

T 2
=

G

4π2M . (13)

If r and T are known for a satellite, then the mass M of the parent can be calculated. This principle
has been used extensively to �nd the masses of heavenly bodies that have satellites. Furthermore, the ratio
r3/T 2 should be a constant for all satellites of the same parent body (because r3/T 2 = GM/4π2). (See Table
1: Orbital Data and Kepler's Third Law).

It is clear from Table 1: Orbital Data and Kepler's Third Law that the ratio of r3/T 2 is constant, at least
to the third digit, for all listed satellites of the Sun, and for those of Jupiter. Small variations in that ratio
have two causes�uncertainties in the r and T data, and perturbations of the orbits due to other bodies.
Interestingly, those perturbations can be�and have been�used to predict the location of new planets and
moons. This is another veri�cation of Newton's universal law of gravitation.

: Newton's universal law of gravitation is modi�ed by Einstein's general theory of relativity, as
we shall see in Particle Physics1. Newton's gravity is not seriously in error�it was and still is
an extremely good approximation for most situations. Einstein's modi�cation is most noticeable
in extremely large gravitational �elds, such as near black holes. However, general relativity also
explains such phenomena as small but long-known deviations of the orbit of the planet Mercury
from classical predictions.

1"Introduction to Particle Physics" <http://cnx.org/content/m42667/latest/>
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3 The Case for Simplicity

The development of the universal law of gravitation by Newton played a pivotal role in the history of ideas.
While it is beyond the scope of this text to cover that history in any detail, we note some important points.
The de�nition of planet set in 2006 by the International Astronomical Union (IAU) states that in the solar
system, a planet is a celestial body that:

1. is in orbit around the Sun,
2. has su�cient mass to assume hydrostatic equilibrium and
3. has cleared the neighborhood around its orbit.

A non-satellite body ful�lling only the �rst two of the above criteria is classi�ed as �dwarf planet.�
In 2006, Pluto was demoted to a `dwarf planet' after scientists revised their de�nition of what constitutes

a �true� planet.

Orbital Data and Kepler's Third Law

Parent Satellite Average orbital
radius r(km)

Period T(y) r3 / T2 (km3 /
y2)

Earth Moon

3.84× 105

0.07481

1.01× 1018

Sun Mercury

5.79× 107

0.2409

3.34× 1024

Venus

1.082× 108

0.6150

3.35× 1024

Earth

1.496× 108

1.000

3.35× 1024

Mars

2.279× 108

1.881

3.35× 1024

continued on next page
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Jupiter

7.783× 108

11.86

3.35× 1024

Saturn

1.427× 109

29.46

3.35× 1024

Neptune

4.497× 109

164.8

3.35× 1024

Pluto

5.90× 109

248.3

3.33× 1024

Jupiter Io

4.22× 105

0.00485 (1.77 d)

3.19× 1021

Europa

6.71× 105

0.00972 (3.55 d)

3.20× 1021

Ganymede

1.07× 106

0.0196 (7.16 d)

3.19× 1021

Callisto

1.88× 106

0.0457 (16.19 d)

3.20× 1021

Table 1

The universal law of gravitation is a good example of a physical principle that is very broadly applicable.
That single equation for the gravitational force describes all situations in which gravity acts. It gives a cause
for a vast number of e�ects, such as the orbits of the planets and moons in the solar system. It epitomizes
the underlying unity and simplicity of physics.

Before the discoveries of Kepler, Copernicus, Galileo, Newton, and others, the solar system was thought
to revolve around Earth as shown in Figure 3(a). This is called the Ptolemaic view, for the Greek philosopher
who lived in the second century AD. This model is characterized by a list of facts for the motions of planets
with no cause and e�ect explanation. There tended to be a di�erent rule for each heavenly body and a
general lack of simplicity.

http://cnx.org/content/m42144/1.4/
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Figure 3(b) represents the modern or Copernican model. In this model, a small set of rules and a single
underlying force explain not only all motions in the solar system, but all other situations involving gravity.
The breadth and simplicity of the laws of physics are compelling. As our knowledge of nature has grown,
the basic simplicity of its laws has become ever more evident.

Figure 3: (a) The Ptolemaic model of the universe has Earth at the center with the Moon, the planets,
the Sun, and the stars revolving about it in complex superpositions of circular paths. This geocentric
model, which can be made progressively more accurate by adding more circles, is purely descriptive,
containing no hints as to what are the causes of these motions. (b) The Copernican model has the Sun
at the center of the solar system. It is fully explained by a small number of laws of physics, including
Newton's universal law of gravitation.

4 Section Summary

• Kepler's laws are stated for a small mass m orbiting a larger mass M in near-isolation. Kepler's laws
of planetary motion are then as follows: Kepler's �rst law
The orbit of each planet about the Sun is an ellipse with the Sun at one focus.
Kepler's second law
Each planet moves so that an imaginary line drawn from the Sun to the planet sweeps out equal areas
in equal times.
Kepler's third law
The ratio of the squares of the periods of any two planets about the Sun is equal to the ratio of the
cubes of their average distances from the Sun:

T 2
1

T 2
2

=
r 3
1

r 3
2

, (14)

where T is the period (time for one orbit) and r is the average radius of the orbit.
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• The period and radius of a satellite's orbit about a larger body M are related by

T 2 =
4π2

GM
r3 (15)

or

r3

T 2
=

G

4π2M . (16)

5 Conceptual Questions

Exercise 1
In what frame(s) of reference are Kepler's laws valid? Are Kepler's laws purely descriptive, or do
they contain causal information?

6 Problem Exercises

Exercise 2
A geosynchronous Earth satellite is one that has an orbital period of precisely 1 day. Such orbits
are useful for communication and weather observation because the satellite remains above the same
point on Earth (provided it orbits in the equatorial plane in the same direction as Earth's rotation).
Calculate the radius of such an orbit based on the data for the moon in Table 1: Orbital Data and
Kepler's Third Law.

Exercise 3 (Solution on p. 11.)

Calculate the mass of the Sun based on data for Earth's orbit and compare the value obtained
with the Sun's actual mass.

Exercise 4
Find the mass of Jupiter based on data for the orbit of one of its moons, and compare your result
with its actual mass.

Exercise 5 (Solution on p. 11.)

Find the ratio of the mass of Jupiter to that of Earth based on data in Table 1: Orbital Data and
Kepler's Third Law.

Exercise 6
Astronomical observations of our Milky Way galaxy indicate that it has a mass of about 8.0×1011

solar masses. A star orbiting on the galaxy's periphery is about 6.0×104 light years from its center.
(a) What should the orbital period of that star be? (b) If its period is 6.0 × 107 instead, what is
the mass of the galaxy? Such calculations are used to imply the existence of �dark matter� in the
universe and have indicated, for example, the existence of very massive black holes at the centers
of some galaxies.

Exercise 7 (Solution on p. 11.)

Integrated Concepts
Space debris left from old satellites and their launchers is becoming a hazard to other satellites.

(a) Calculate the speed of a satellite in an orbit 900 km above Earth's surface. (b) Suppose a loose
rivet is in an orbit of the same radius that intersects the satellite's orbit at an angle of 90º relative
to Earth. What is the velocity of the rivet relative to the satellite just before striking it? (c) Given
the rivet is 3.00 mm in size, how long will its collision with the satellite last? (d) If its mass is 0.500
g, what is the average force it exerts on the satellite? (e) How much energy in joules is generated
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by the collision? (The satellite's velocity does not change appreciably, because its mass is much
greater than the rivet's.)

Exercise 8 (Solution on p. 11.)

Unreasonable Results
(a) Based on Kepler's laws and information on the orbital characteristics of the Moon, calculate

the orbital radius for an Earth satellite having a period of 1.00 h. (b) What is unreasonable about
this result? (c) What is unreasonable or inconsistent about the premise of a 1.00 h orbit?

Exercise 9
Construct Your Own Problem
On February 14, 2000, the NEAR spacecraft was successfully inserted into orbit around Eros,

becoming the �rst arti�cial satellite of an asteroid. Construct a problem in which you determine
the orbital speed for a satellite near Eros. You will need to �nd the mass of the asteroid and
consider such things as a safe distance for the orbit. Although Eros is not spherical, calculate the
acceleration due to gravity on its surface at a point an average distance from its center of mass.
Your instructor may also wish to have you calculate the escape velocity from this point on Eros.

http://cnx.org/content/m42144/1.4/
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Solutions to Exercises in this Module

Solution to Exercise (p. 9)
1.98× 1030 kg
Solution to Exercise (p. 9)
MJ

ME
= 316

Solution to Exercise (p. 9)
a) 2.11× 104 m/s

b) 2.98× 104 m/s
c) 1.01× 10−7 s
d) 1.48× 108 N
e) 2.22× 105 J

Solution to Exercise (p. 10)
a) 5.08× 103 km

b) This radius is unreasonable because it is less than the radius of earth.
c) The premise of a one-hour orbit is inconsistent with the known radius of the earth.
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