You will find the following problem-solving strategies useful whenever you deal with energy. The strategies help in organizing and reinforcing energy concepts. In fact, they are used in the examples presented in this chapter. The familiar general problem-solving strategies presented earlier—involving identifying physical principles, knowns, and unknowns, checking units, and so on—continue to be relevant here.

*Step 1.* Determine the system of interest and identify what information is given and what quantity is to be calculated. A sketch will help.

*Step 2.* Examine all the forces involved and determine whether you know or are given the potential energy from the work done by the forces. Then use step 3 or step 4.

*Step 3.* If you know the potential energies for the forces that enter into the problem, then forces are all conservative, and you can apply conservation of mechanical energy simply in terms of potential and kinetic energy. The equation expressing conservation of energy is

KEi+PEi=KEf+PEf.KEi+PEi=KEf+PEf. size 12{"KE" rSub { size 8{i} } +"PE" rSub { size 8{i} } ="KE" rSub { size 8{f} } +"PE" rSub { size 8{f} } } {}

(2)*Step 4.* If you know the potential energy for only some of the forces, possibly because some of them are nonconservative and do not have a potential energy, or if there are other energies that are not easily treated in terms of force and work, then the conservation of energy law in its most general form must be used.

KEi+PEi+Wnc+OEi=KEf+PEf+OEf.KEi+PEi+Wnc+OEi=KEf+PEf+OEf. size 12{"KE" rSub { size 8{i} } +"PE" rSub { size 8{i} } +W rSub { size 8{"nc"} } +"OE" rSub { size 8{i} } ="KE" rSub { size 8{f} } +"PE" rSub { size 8{f} } +"OE" rSub { size 8{f} } } {}

(3)
In most problems, one or more of the terms is zero, simplifying its solution. Do not calculate WcWc size 12{W rSub { size 8{c} } } {}, the work done by conservative forces; it is already incorporated in the PEPE size 12{"PE"} {} terms.

*Step 5.* You have already identified the types of work and energy involved (in step 2). Before solving for the unknown, *eliminate terms wherever possible* to simplify the algebra. For example, choose h=0h=0 size 12{h=0} {} at either the initial or final point, so that PEgPEg size 12{"PE" rSub { size 8{g} } } {} is zero there. Then solve for the unknown in the customary manner.

*Step 6.* *Check the answer to see if it is reasonable*. Once you have solved a problem, reexamine the forms of work and energy to see if you have set up the conservation of energy equation correctly. For example, work done against friction should be negative, potential energy at the bottom of a hill should be less than that at the top, and so on. Also check to see that the numerical value obtained is reasonable. For example, the final speed of a skateboarder who coasts down a 3-m-high ramp could reasonably be 20 km/h, but *not* 80 km/h.

Comments:"This introductory, algebra-based, two-semester college physics book is grounded with real-world examples, illustrations, and explanations to help students grasp key, fundamental physics concepts. […]"