Skip to content Skip to navigation Skip to collection information

OpenStax-CNX

You are here: Home » Content » College Physics » Elastic Collisions in One Dimension
Content endorsed by: OpenStax College

Navigation

Table of Contents

Lenses

What is a lens?

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

This content is ...

Endorsed by Endorsed (What does "Endorsed by" mean?)

This content has been endorsed by the organizations listed. Click each link for a list of all content endorsed by the organization.
  • OpenStax College

    This collection is included in aLens by: OpenStax College

    Click the "OpenStax College" link to see all content they endorse.

Affiliated with (What does "Affiliated with" mean?)

This content is either by members of the organizations listed or about topics related to the organizations listed. Click each link to see a list of all content affiliated with the organization.
  • Pierpont C & TC display tagshide tags

    This module is included inLens: Pierpont Community & Technical College's Lens
    By: Pierpont Community & Technical CollegeAs a part of collection: "College Physics -- HLCA 1104"

    Click the "Pierpont C & TC" link to see all content affiliated with them.

    Click the tag icon tag icon to display tags associated with this content.

  • Featured Content display tagshide tags

    This collection is included inLens: Connexions Featured Content
    By: Connexions

    Comments:

    "This introductory, algebra-based, two-semester college physics book is grounded with real-world examples, illustrations, and explanations to help students grasp key, fundamental physics concepts. […]"

    Click the "Featured Content" link to see all content affiliated with them.

    Click the tag icon tag icon to display tags associated with this content.

Recently Viewed

This feature requires Javascript to be enabled.

Tags

(What is a tag?)

These tags come from the endorsement, affiliation, and other lenses that include this content.
 

Elastic Collisions in One Dimension

Module by: OpenStax College. E-mail the author

Summary:

  • Describe an elastic collision of two objects in one dimension.
  • Define internal kinetic energy.
  • Derive an expression for conservation of internal kinetic energy in a one dimensional collision.
  • Determine the final velocities in an elastic collision given masses and initial velocities.

Let us consider various types of two-object collisions. These collisions are the easiest to analyze, and they illustrate many of the physical principles involved in collisions. The conservation of momentum principle is very useful here, and it can be used whenever the net external force on a system is zero.

We start with the elastic collision of two objects moving along the same line—a one-dimensional problem. An elastic collision is one that also conserves internal kinetic energy. Internal kinetic energy is the sum of the kinetic energies of the objects in the system. Figure 1 illustrates an elastic collision in which internal kinetic energy and momentum are conserved.

Truly elastic collisions can only be achieved with subatomic particles, such as electrons striking nuclei. Macroscopic collisions can be very nearly, but not quite, elastic—some kinetic energy is always converted into other forms of energy such as heat transfer due to friction and sound. One macroscopic collision that is nearly elastic is that of two steel blocks on ice. Another nearly elastic collision is that between two carts with spring bumpers on an air track. Icy surfaces and air tracks are nearly frictionless, more readily allowing nearly elastic collisions on them.

Elastic Collision:

An elastic collision is one that conserves internal kinetic energy.

Internal Kinetic Energy:

Internal kinetic energy is the sum of the kinetic energies of the objects in the system.

Figure 1: An elastic one-dimensional two-object collision. Momentum and internal kinetic energy are conserved.
The system of interest contains a smaller mass m sub1 and a larger mass m sub2 moving on a frictionless surface. M sub 2 moves with velocity V sub 2 and momentum p sub 2 and m sub 1 moves behind m sub 2, with velocity V sub 1 and momentum p sub 1 toward the right direction. P 1 plus P 2 equals p total. The net force is zero. After collision m sub 1 moves toward the left with velocity V sub 1 while m sub 2 moves toward the right with velocity V sub 2 on the same frictionless surface. The momentum of m sub 1 becomes p 1 prime and m 2 becomes p 2 prime now. P 1 prime plus p 2 prime equals p total.

Now, to solve problems involving one-dimensional elastic collisions between two objects we can use the equations for conservation of momentum and conservation of internal kinetic energy. First, the equation for conservation of momentum for two objects in a one-dimensional collision is

p 1 + p 2 = p 1 + p 2 F net = 0 p 1 + p 2 = p 1 + p 2 F net = 0 size 12{ left (F rSub { size 8{"net"} } =0 right )} {}
(1)

or

m1v1+m2v2=m1v1+m2v2Fnet=0,m1v1+m2v2=m1v1+m2v2Fnet=0, size 12{ left (F rSub { size 8{"net"} } =0 right )} {}
(2)

where the primes (') indicate values after the collision. By definition, an elastic collision conserves internal kinetic energy, and so the sum of kinetic energies before the collision equals the sum after the collision. Thus,

12m1v12+ 12m2 v22 = 12 m1 v12 + 12 m2 v22 (two-object elastic collision)12m1v12+ 12m2 v22 = 12 m1 v12 + 12 m2 v22 (two-object elastic collision)
(3)

expresses the equation for conservation of internal kinetic energy in a one-dimensional collision.

Example 1: Calculating Velocities Following an Elastic Collision

Calculate the velocities of two objects following an elastic collision, given that

m 1 = 0 . 500 kg, m 2 = 3 . 50 kg, v 1 = 4 . 00 m/s, and v 2 = 0 . m 1 = 0 . 500 kg, m 2 = 3 . 50 kg, v 1 = 4 . 00 m/s, and v 2 = 0 . size 12{m rSub { size 8{1} } =0 "." "500"" kg, "m rSub { size 8{2} } =3 "." "50"" kg, "v rSub { size 8{1} } =4 "." "00"" m/s, and "v rSub { size 8{2} } =0 "." } {}
(4)

Strategy and Concept

First, visualize what the initial conditions mean—a small object strikes a larger object that is initially at rest. This situation is slightly simpler than the situation shown in Figure 1 where both objects are initially moving. We are asked to find two unknowns (the final velocities v1v1 and v2v2 size 12{v rSub { size 8{2} } '} {}). To find two unknowns, we must use two independent equations. Because this collision is elastic, we can use the above two equations. Both can be simplified by the fact that object 2 is initially at rest, and thus v2=0v2=0 size 12{v rSub { size 8{2} } =0} {}. Once we simplify these equations, we combine them algebraically to solve for the unknowns.

Solution

For this problem, note that v2=0 v2=0 size 12{v rSub { size 8{2} } =0} {} and use conservation of momentum. Thus,

p 1 = p 1 + p 2 p 1 = p 1 + p 2 size 12{p rSub { size 8{1} } =p' rSub { size 8{1} } +p' rSub { size 8{2} } } {}
(5)

or

m1v1=m1v1+m2v2.m1v1=m1v1+m2v2. size 12{m rSub { size 8{1} } v rSub { size 8{1} } =m rSub { size 8{1} } { {v}} sup { ' } rSub { size 8{1} } +m rSub { size 8{2} } { {v}} sup { ' } rSub { size 8{2} } } {}
(6)

Using conservation of internal kinetic energy and that v2=0v2=0 size 12{v rSub { size 8{2} } =0} {},

1 2 m 1 v 1 2 = 1 2 m 1 v 1 2 + 1 2 m 2 v 2 2 . 1 2 m 1 v 1 2 = 1 2 m 1 v 1 2 + 1 2 m 2 v 2 2 . size 12{ { {1} over {2} } m rSub { size 8{1} } v rSub { size 8{1} rSup { size 8{2} } } = { {1} over {2} } m rSub { size 8{1} } v"" lSub { size 8{1} } ' rSup { size 8{2} } + { {1} over {2} } m rSub { size 8{2} } v rSub { size 8{2} } ' rSup { size 8{2} } } {}
(7)

Solving the first equation (momentum equation) for v2v2 size 12{ { {v}} sup { ' } rSub { size 8{2} } } {}, we obtain

v2 = m 1 m 2 v 1 v1 . v2 = m 1 m 2 v 1 v1 . size 12{ { {v}} sup { ' } rSub { size 8{2} } = { {m rSub { size 8{1} } } over {m rSub { size 8{2} } } } left (v rSub { size 8{1} } - { {v}} sup { ' } rSub { size 8{1} } right )} {}
(8)

Substituting this expression into the second equation (internal kinetic energy equation) eliminates the variable v2v2 size 12{ { {v}} sup { ' } rSub { size 8{2} } } {}, leaving only v1v1 size 12{ { {v}} sup { ' } rSub { size 8{1} } } {} as an unknown (the algebra is left as an exercise for the reader). There are two solutions to any quadratic equation; in this example, they are

v1 = 4 . 00 m/s v1 = 4 . 00 m/s size 12{ { {v}} sup { ' } rSub { size 8{1} } =4 "." "00"`"m/s"} {}
(9)

and

v1=3.00 m/s.v1=3.00 m/s. size 12{ { {v}} sup { ' } rSub { size 8{1} } = - 3 "." "00"" m/s"} {}
(10)

As noted when quadratic equations were encountered in earlier chapters, both solutions may or may not be meaningful. In this case, the first solution is the same as the initial condition. The first solution thus represents the situation before the collision and is discarded. The second solution (v1=3.00 m/s)(v1=3.00 m/s) size 12{ \( { {v}} sup { ' } rSub { size 8{1} } = - 3 "." "00"`"m/s" \) } {} is negative, meaning that the first object bounces backward. When this negative value of v1v1 size 12{ { {v}} sup { ' } rSub { size 8{1} } } {} is used to find the velocity of the second object after the collision, we get

v2 = m 1 m 2 v 1 v1 = 0 . 500 kg 3 . 50 kg 4 . 00 3 . 00 m/s v2 = m 1 m 2 v 1 v1 = 0 . 500 kg 3 . 50 kg 4 . 00 3 . 00 m/s size 12{ { {v}} sup { ' } rSub { size 8{2} } = { {m rSub { size 8{1} } } over {m rSub { size 8{2} } } } left (v rSub { size 8{1} } - { {v}} sup { ' } rSub { size 8{1} } right )= { {0 "." "500"`"kg"} over {3 "." "50"`"kg"} } left [4 "." "00" - left ( - 3 "." "00" right ) right ]`"m/s"} {}
(11)

or

v2=1.00 m/s.v2=1.00 m/s. size 12{ { {v}} sup { ' } rSub { size 8{2} } =1 "." "00"`"m/s"} {}
(12)

Discussion

The result of this example is intuitively reasonable. A small object strikes a larger one at rest and bounces backward. The larger one is knocked forward, but with a low speed. (This is like a compact car bouncing backward off a full-size SUV that is initially at rest.) As a check, try calculating the internal kinetic energy before and after the collision. You will see that the internal kinetic energy is unchanged at 4.00 J. Also check the total momentum before and after the collision; you will find it, too, is unchanged.

The equations for conservation of momentum and internal kinetic energy as written above can be used to describe any one-dimensional elastic collision of two objects. These equations can be extended to more objects if needed.

Making Connections: Take-Home Investigation—Ice Cubes and Elastic Collision:

Find a few ice cubes which are about the same size and a smooth kitchen tabletop or a table with a glass top. Place the ice cubes on the surface several centimeters away from each other. Flick one ice cube toward a stationary ice cube and observe the path and velocities of the ice cubes after the collision. Try to avoid edge-on collisions and collisions with rotating ice cubes. Have you created approximately elastic collisions? Explain the speeds and directions of the ice cubes using momentum.

PhET Explorations: Collision Lab:

Investigate collisions on an air hockey table. Set up your own experiments: vary the number of discs, masses and initial conditions. Is momentum conserved? Is kinetic energy conserved? Vary the elasticity and see what happens.

Figure 2: Collision Lab
Figure 2 (collision-lab_en.jar)

Section Summary

  • An elastic collision is one that conserves internal kinetic energy.
  • Conservation of kinetic energy and momentum together allow the final velocities to be calculated in terms of initial velocities and masses in one dimensional two-body collisions.

Conceptual Questions

Exercise 1

What is an elastic collision?

Problems & Exercises

Exercise 1

Two identical objects (such as billiard balls) have a one-dimensional collision in which one is initially motionless. After the collision, the moving object is stationary and the other moves with the same speed as the other originally had. Show that both momentum and kinetic energy are conserved.

Exercise 2

Professional Application

Two manned satellites approach one another at a relative speed of 0.250 m/s, intending to dock. The first has a mass of 4.00×103 kg4.00×103 kg size 12{4 "." "00" times "10" rSup { size 8{3} } " kg"} {}, and the second a mass of 7.50×103 kg7.50×103 kg size 12{7 "." "50" times "10" rSup { size 8{3} } " kg"} {}. If the two satellites collide elastically rather than dock, what is their final relative velocity?

Solution

0.250 m/s

Exercise 3

A 70.0-kg ice hockey goalie, originally at rest, catches a 0.150-kg hockey puck slapped at him at a velocity of 35.0 m/s. Suppose the goalie and the ice puck have an elastic collision and the puck is reflected back in the direction from which it came. What would their final velocities be in this case?

Glossary

elastic collision:
a collision that also conserves internal kinetic energy
internal kinetic energy:
the sum of the kinetic energies of the objects in a system

Collection Navigation

Content actions

Download module as:

Add:

Collection to:

My Favorites (?)

'My Favorites' is a special kind of lens which you can use to bookmark modules and collections. 'My Favorites' can only be seen by you, and collections saved in 'My Favorites' can remember the last module you were on. You need an account to use 'My Favorites'.

| A lens I own (?)

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

| External bookmarks

Module to:

My Favorites (?)

'My Favorites' is a special kind of lens which you can use to bookmark modules and collections. 'My Favorites' can only be seen by you, and collections saved in 'My Favorites' can remember the last module you were on. You need an account to use 'My Favorites'.

| A lens I own (?)

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

| External bookmarks