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Abstract

• Describe the Davisson-Germer experiment, and explain how it provides evidence for the wave
nature of electrons.

1 De Broglie Wavelength

In 1923 a French physics graduate student named Prince Louis-Victor de Broglie (1892�1987) made a radical
proposal based on the hope that nature is symmetric. If EM radiation has both particle and wave properties,
then nature would be symmetric if matter also had both particle and wave properties. If what we once thought
of as an unequivocal wave (EM radiation) is also a particle, then what we think of as an unequivocal particle
(matter) may also be a wave. De Broglie's suggestion, made as part of his doctoral thesis, was so radical
that it was greeted with some skepticism. A copy of his thesis was sent to Einstein, who said it was not only
probably correct, but that it might be of fundamental importance. With the support of Einstein and a few
other prominent physicists, de Broglie was awarded his doctorate.

De Broglie took both relativity and quantum mechanics into account to develop the proposal that all

particles have a wavelength, given by

λ =
h

p
(matter and photons) , (1)

where h is Planck's constant and p is momentum. This is de�ned to be the de Broglie wavelength. (Note
that we already have this for photons, from the equation p = h/λ.) The hallmark of a wave is interference.
If matter is a wave, then it must exhibit constructive and destructive interference. Why isn't this ordinarily
observed? The answer is that in order to see signi�cant interference e�ects, a wave must interact with an
object about the same size as its wavelength. Since h is very small, λ is also small, especially for macroscopic
objects. A 3-kg bowling ball moving at 10 m/s, for example, has

λ = h/p =
(
6.63 × 10�34 J·s

)
/ [(3 kg) (10 m/s)] = 2× 10�35 m. (2)

This means that to see its wave characteristics, the bowling ball would have to interact with something
about 10�35 m in size�far smaller than anything known. When waves interact with objects much larger
than their wavelength, they show negligible interference e�ects and move in straight lines (such as light
rays in geometric optics). To get easily observed interference e�ects from particles of matter, the longest
wavelength and hence smallest mass possible would be useful. Therefore, this e�ect was �rst observed with
electrons.
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American physicists Clinton J. Davisson and Lester H. Germer in 1925 and, independently, British
physicist G. P. Thomson (son of J. J. Thomson, discoverer of the electron) in 1926 scattered electrons from
crystals and found di�raction patterns. These patterns are exactly consistent with interference of electrons
having the de Broglie wavelength and are somewhat analogous to light interacting with a di�raction grating.
(See Figure 1.)

: All microscopic particles, whether massless, like photons, or having mass, like electrons, have
wave properties. The relationship between momentum and wavelength is fundamental for all par-
ticles.

De Broglie's proposal of a wave nature for all particles initiated a remarkably productive era in which the
foundations for quantum mechanics were laid. In 1926, the Austrian physicist Erwin Schrödinger (1887�1961)
published four papers in which the wave nature of particles was treated explicitly with wave equations. At
the same time, many others began important work. Among them was German physicist Werner Heisenberg
(1901�1976) who, among many other contributions to quantum mechanics, formulated a mathematical treat-
ment of the wave nature of matter that used matrices rather than wave equations. We will deal with some
speci�cs in later sections, but it is worth noting that de Broglie's work was a watershed for the development
of quantum mechanics. De Broglie was awarded the Nobel Prize in 1929 for his vision, as were Davisson and
G. P. Thomson in 1937 for their experimental veri�cation of de Broglie's hypothesis.
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Figure 1: This di�raction pattern was obtained for electrons di�racted by crystalline silicon. Bright
regions are those of constructive interference, while dark regions are those of destructive interference.
(credit: Ndthe, Wikimedia Commons)

Example 1: Electron Wavelength versus Velocity and Energy
For an electron having a de Broglie wavelength of 0.167 nm (appropriate for interacting with
crystal lattice structures that are about this size): (a) Calculate the electron's velocity, assuming
it is nonrelativistic. (b) Calculate the electron's kinetic energy in eV.

Strategy
For part (a), since the de Broglie wavelength is given, the electron's velocity can be obtained

from λ = h/p by using the nonrelativistic formula for momentum, p = mv. For part (b), once v is
obtained (and it has been veri�ed that v is nonrelativistic), the classical kinetic energy is simply
(1/2)mv2.

Solution for (a)
Substituting the nonrelativistic formula for momentum (p = mv) into the de Broglie wavelength

gives

λ =
h

p
=

h

mv
. (3)
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Solving for v gives

v =
h

mλ
. (4)

Substituting known values yields

v =
6.63 × 10�34 J · s(

9.11 × 10�31 kg
) (

0.167 × 10�9 m
) = 4.36 × 106 m/s. (5)

Solution for (b)
While fast compared with a car, this electron's speed is not highly relativistic, and so we can

comfortably use the classical formula to �nd the electron's kinetic energy and convert it to eV as
requested.

KE = 1
2mv

2

= 1
2

(
9.11× 10�31 kg

) (
4.36 × 106 m/s

)2

= (86.4× 10�18 J)
(

1 eV
1.602× 10�19 J

)
= 54.0 eV

(6)

Discussion
This low energy means that these 0.167-nm electrons could be obtained by accelerating them

through a 54.0-V electrostatic potential, an easy task. The results also con�rm the assumption
that the electrons are nonrelativistic, since their velocity is just over 1% of the speed of light and
the kinetic energy is about 0.01% of the rest energy of an electron (0.511 MeV). If the electrons
had turned out to be relativistic, we would have had to use more involved calculations employing
relativistic formulas.

2 Electron Microscopes

One consequence or use of the wave nature of matter is found in the electron microscope. As we have
discussed, there is a limit to the detail observed with any probe having a wavelength. Resolution, or
observable detail, is limited to about one wavelength. Since a potential of only 54 V can produce electrons
with sub-nanometer wavelengths, it is easy to get electrons with much smaller wavelengths than those of
visible light (hundreds of nanometers). Electron microscopes can, thus, be constructed to detect much
smaller details than optical microscopes. (See Figure 2.)

There are basically two types of electron microscopes. The transmission electron microscope (TEM)
accelerates electrons that are emitted from a hot �lament (the cathode). The beam is broadened and then
passes through the sample. A magnetic lens focuses the beam image onto a �uorescent screen, a photographic
plate, or (most probably) a CCD (light sensitive camera), from which it is transferred to a computer. The
TEM is similar to the optical microscope, but it requires a thin sample examined in a vacuum. However it
can resolve details as small as 0.1 nm (10−10 m), providing magni�cations of 100 million times the size of
the original object. The TEM has allowed us to see individual atoms and structure of cell nuclei.

The scanning electron microscope (SEM) provides images by using secondary electrons produced by the
primary beam interacting with the surface of the sample (see Figure 2). The SEM also uses magnetic lenses
to focus the beam onto the sample. However, it moves the beam around electrically to �scan� the sample in
the x and y directions. A CCD detector is used to process the data for each electron position, producing
images like the one at the beginning of this chapter. The SEM has the advantage of not requiring a thin
sample and of providing a 3-D view. However, its resolution is about ten times less than a TEM.
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Figure 2: Schematic of a scanning electron microscope (SEM) (a) used to observe small details, such as
those seen in this image of a tooth of a Himipristis, a type of shark (b). (credit: Dallas Krentzel, Flickr)

Electrons were the �rst particles with mass to be directly con�rmed to have the wavelength proposed by
de Broglie. Subsequently, protons, helium nuclei, neutrons, and many others have been observed to exhibit
interference when they interact with objects having sizes similar to their de Broglie wavelength. The de
Broglie wavelength for massless particles was well established in the 1920s for photons, and it has since been
observed that all massless particles have a de Broglie wavelength λ = h/p. The wave nature of all particles
is a universal characteristic of nature. We shall see in following sections that implications of the de Broglie
wavelength include the quantization of energy in atoms and molecules, and an alteration of our basic view of
nature on the microscopic scale. The next section, for example, shows that there are limits to the precision
with which we may make predictions, regardless of how hard we try. There are even limits to the precision
with which we may measure an object's location or energy.

: The wave nature of matter allows it to exhibit all the characteristics of other, more familiar,
waves. Di�raction gratings, for example, produce di�raction patterns for light that depend on
grating spacing and the wavelength of the light. This e�ect, as with most wave phenomena, is
most pronounced when the wave interacts with objects having a size similar to its wavelength. For
gratings, this is the spacing between multiple slits.) When electrons interact with a system having
a spacing similar to the electron wavelength, they show the same types of interference patterns as
light does for di�raction gratings, as shown at top left in Figure 3.

Atoms are spaced at regular intervals in a crystal as parallel planes, as shown in the bottom part of
Figure 3. The spacings between these planes act like the openings in a di�raction grating. At certain
incident angles, the paths of electrons scattering from successive planes di�er by one wavelength
and, thus, interfere constructively. At other angles, the path length di�erences are not an integral
wavelength, and there is partial to total destructive interference. This type of scattering from a
large crystal with well-de�ned lattice planes can produce dramatic interference patterns. It is called
Bragg re�ection, for the father-and-son team who �rst explored and analyzed it in some detail. The
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expanded view also shows the path-length di�erences and indicates how these depend on incident
angle θ in a manner similar to the di�raction patterns for x rays re�ecting from a crystal.

Figure 3: The di�raction pattern at top left is produced by scattering electrons from a crystal and is
graphed as a function of incident angle relative to the regular array of atoms in a crystal, as shown at
bottom. Electrons scattering from the second layer of atoms travel farther than those scattered from the
top layer. If the path length di�erence (PLD) is an integral wavelength, there is constructive interference.

Let us take the spacing between parallel planes of atoms in the crystal to be d. As mentioned,
if the path length di�erence (PLD) for the electrons is a whole number of wavelengths, there will
be constructive interference�that is, PLD = nλ (n = 1, 2, 3, . . . ). Because AB = BC = d sin θ, we
have constructive interference when nλ = 2d sin θ. This relationship is called the Bragg equation

and applies not only to electrons but also to x rays.

The wavelength of matter is a submicroscopic characteristic that explains a macroscopic phe-
nomenon such as Bragg re�ection. Similarly, the wavelength of light is a submicroscopic char-
acteristic that explains the macroscopic phenomenon of di�raction patterns.
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3 Section Summary

• Particles of matter also have a wavelength, called the de Broglie wavelength, given by λ = h
p , where p

is momentum.
• Matter is found to have the same interference characteristics as any other wave.

4 Conceptual Questions

Exercise 1
How does the interference of water waves di�er from the interference of electrons? How are they
analogous?

Exercise 2
Describe one type of evidence for the wave nature of matter.

Exercise 3
Describe one type of evidence for the particle nature of EM radiation.

5 Problems & Exercises

Exercise 4 (Solution on p. 9.)

At what velocity will an electron have a wavelength of 1.00 m?

Exercise 5
What is the wavelength of an electron moving at 3.00% of the speed of light?

Exercise 6 (Solution on p. 9.)

At what velocity does a proton have a 6.00-fm wavelength (about the size of a nucleus)? Assume
the proton is nonrelativistic. (1 femtometer = 10−15 m.)

Exercise 7
What is the velocity of a 0.400-kg billiard ball if its wavelength is 7.50 cm (large enough for it to
interfere with other billiard balls)?

Exercise 8 (Solution on p. 9.)

Find the wavelength of a proton moving at 1.00% of the speed of light.

Exercise 9
Experiments are performed with ultracold neutrons having velocities as small as 1.00 m/s. (a)
What is the wavelength of such a neutron? (b) What is its kinetic energy in eV?

Exercise 10 (Solution on p. 9.)

(a) Find the velocity of a neutron that has a 6.00-fm wavelength (about the size of a nucleus).
Assume the neutron is nonrelativistic. (b) What is the neutron's kinetic energy in MeV?

Exercise 11
What is the wavelength of an electron accelerated through a 30.0-kV potential, as in a TV tube?

Exercise 12 (Solution on p. 9.)

What is the kinetic energy of an electron in a TEM having a 0.0100-nm wavelength?

Exercise 13
(a) Calculate the velocity of an electron that has a wavelength of 1.00 µm. (b) Through what
voltage must the electron be accelerated to have this velocity?

Exercise 14 (Solution on p. 9.)

The velocity of a proton emerging from a Van de Graa� accelerator is 25.0% of the speed of light.
(a) What is the proton's wavelength? (b) What is its kinetic energy, assuming it is nonrelativistic?
(c) What was the equivalent voltage through which it was accelerated?
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Exercise 15
The kinetic energy of an electron accelerated in an x-ray tube is 100 keV. Assuming it is nonrela-
tivistic, what is its wavelength?

Exercise 16 (Solution on p. 9.)

Unreasonable Results
(a) Assuming it is nonrelativistic, calculate the velocity of an electron with a 0.100-fm wavelength

(small enough to detect details of a nucleus). (b) What is unreasonable about this result? (c) Which
assumptions are unreasonable or inconsistent?
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Solutions to Exercises in this Module

Solution to Exercise (p. 7)
7.27× 10−−4 m
Solution to Exercise (p. 7)
6.60× 107 m/s
Solution to Exercise (p. 7)
1.32× 10−−13 m
Solution to Exercise (p. 7)
(a) 6.59× 107 m/s

(b) 22.7MeV
Solution to Exercise (p. 7)

15.0 keV (7)

Solution to Exercise (p. 7)
(a) 5.29 fm

(b) 4.70× 10−12 J
(c) 29.3 MV

Solution to Exercise (p. 8)
(a) 7.27× 1012 m/s

(b) This is thousands of times the speed of light (an impossibility).
(c) The assumption that the electron is non-relativistic is unreasonable at this wavelength.

Glossary

De�nition 1: de Broglie wavelength
the wavelength possessed by a particle of matter, calculated by λ = h/p
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