Skip to content Skip to navigation

OpenStax_CNX

You are here: Home » Content » Superstrings

Navigation

Recently Viewed

This feature requires Javascript to be enabled.

Tags

(What is a tag?)

These tags come from the endorsement, affiliation, and other lenses that include this content.
 

Superstrings

Module by: OpenStax College. E-mail the author

Summary:

  • Define Superstring theory.
  • Explain the relationship between Superstring theory and the Big Bang.

Note: You are viewing an old version of this document. The latest version is available here.

Introduced earlier in GUTS: The Unification of Forces Superstring theory is an attempt to unify gravity with the other three forces and, thus, must contain quantum gravity. The main tenet of Superstring theory is that fundamental particles, including the graviton that carries the gravitational force, act like one-dimensional vibrating strings. Since gravity affects the time and space in which all else exists, Superstring theory is an attempt at a Theory of Everything (TOE). Each independent quantum number is thought of as a separate dimension in some super space (analogous to the fact that the familiar dimensions of space are independent of one another) and is represented by a different type of Superstring. As the universe evolved after the Big Bang and forces became distinct (spontaneous symmetry breaking), some of the dimensions of superspace are imagined to have curled up and become unnoticed.

Forces are expected to be unified only at extremely high energies and at particle separations on the order of 1035m1035m size 12{"10" rSup { size 8{ - "35"} } `m} {}. This could mean that Superstrings must have dimensions or wavelengths of this size or smaller. Just as quantum gravity may imply that there are no time intervals shorter than some finite value, it also implies that there may be no sizes smaller than some tiny but finite value. That may be about 1035m1035m size 12{"10" rSup { size 8{ - "35"} } `m} {}. If so, and if Superstring theory can explain all it strives to, then the structures of Superstrings are at the lower limit of the smallest possible size and can have no further substructure. This would be the ultimate answer to the question the ancient Greeks considered. There is a finite lower limit to space.

Not only is Superstring theory in its infancy, it deals with dimensions about 17 orders of magnitude smaller than the 1018m1018m size 12{"10" rSup { size 8{ - "18"} } `m} {} details that we have been able to observe directly. It is thus relatively unconstrained by experiment, and there are a host of theoretical possibilities to choose from. This has led theorists to make choices subjectively (as always) on what is the most elegant theory, with less hope than usual that experiment will guide them. It has also led to speculation of alternate universes, with their Big Bangs creating each new universe with a random set of rules. These speculations may not be tested even in principle, since an alternate universe is by definition unattainable. It is something like exploring a self-consistent field of mathematics, with its axioms and rules of logic that are not consistent with nature. Such endeavors have often given insight to mathematicians and scientists alike and occasionally have been directly related to the description of new discoveries.

Section Summary

  • Superstring theory holds that fundamental particles are one-dimensional vibrations analogous to those on strings and is an attempt at a theory of quantum gravity.

Problems & Exercises

Exercise 1

The characteristic length of entities in Superstring theory is approximately 1035m1035m size 12{"10" rSup { size 8{ - "35"} } `m} {}.

(a) Find the energy in GeV of a photon of this wavelength.

(b) Compare this with the average particle energy of 1019GeV1019GeV size 12{"10" rSup { size 8{"19"} } `"GeV"} {} needed for unification of forces.

Solution

(a) 1 × 10 20 1 × 10 20 1 x 10^20

(b) 10 times greater

Glossary

Superstring theory:
a theory to unify gravity with the other three forces in which the fundamental particles are considered to act like one-dimensional vibrating strings

Content actions

Download module as:

Add module to:

My Favorites (?)

'My Favorites' is a special kind of lens which you can use to bookmark modules and collections. 'My Favorites' can only be seen by you, and collections saved in 'My Favorites' can remember the last module you were on. You need an account to use 'My Favorites'.

| A lens I own (?)

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

| External bookmarks