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Results and Discussion
∗

Anthony Blake

This work is produced by The Connexions Project and licensed under the

Creative Commons Attribution License †

In order to test the hypotheses set out in Introduction1, SFFT was benchmarked alongside FFTW and
other libraries on a wide range of machines, as per the methods set out in Benchmark methods2. The majority
of the data was collected on Linux machines populated with SSE capable Intel microprocessors, with some
additional data collected on small set of AVX and ARM NEON machines. The results are divided into three
sections: speed, accuracy and setup time, with an additional section detailing a model that predicts SFFT's
performance for di�erent con�gurations. Finally, the chapter concludes by relating the results to other work.

Modelstring L1d L2 L3

Intel(R) Pentium(R) 4 CPU 2.80GHz 16 512 -

Intel(R) Pentium(R) D CPU 3.00GHz 16 1024 -

Intel(R) Pentium(R) M processor 1000MHz 32 1024 -

Intel(R) Xeon(TM) CPU 2.40GHz 16 2048 -

Intel(R) Xeon(R) CPU E5335 @ 2.00GHz 32 4096 -

Intel(R) Xeon(R) CPU X5355 @ 2.66GHz 32 8192 -

Intel(R) Xeon(R) CPU E5430 @ 2.66GHz 32 6144 -

Intel(R) Xeon(R) CPU X5560 @ 2.80GHz 32 256 8192

Intel(R) Core(TM)2 CPU 6600 @ 2.40GHz 32 4096 -

Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz 32 4096 -

Intel(R) Core(TM)2 Duo CPU E6850 @ 3.00GHz 32 4096 -

Intel(R) Core(TM)2 Duo CPU E8400 @ 3.00GHz 32 6144 -

Intel(R) Core(TM)2 Duo CPU P8600 @ 2.40GHz 32 3072 -

Intel(R) Core(TM) i5 CPU 660 @ 3.33GHz 32 256 4096

Intel(R) Core(TM) i7-2600 CPU @ 3.40GHz 32 256 8192

Table 1: Linux benchmark machines, listed with the size of each level of cache (in kilobytes)

Table 1 presents a summary of the Linux machines that were used to run benchmarks. The majority
of the machines were functioning as either lab workstations or servers in a University environment. The

∗Version 1.2: Jul 15, 2012 10:37 pm -0500
†http://creativecommons.org/licenses/by/3.0/
1"Introduction" <http://cnx.org/content/m43792/latest/>
2"Benchmark Methods" <http://cnx.org/content/m43804/latest/>
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benchmarks took approximately 12 hours to run, and while e�orts were made to reduce each machine's load
to a minimum, there were still transient system processes, such as log rotations and backups during the night
that have introduced noise into the results.

For the Linux benchmarks, both 32-bit and 64-bit statically-linked binaries for SFFT, FFTW 3.3 and
SPIRAL were compiled with icc 12.0.5, gcc 4.4.5 and clang 1.1. For the OS X benchmarks, 32-bit and 64-bit
binaries for SFFT, FFTW 3.3 and SPIRAL were compiled with icc 12.1.0, llvm-gcc 4.2.1 and clang 3.0. The
builds of SFFT and FFTW 3.3.1 for iOS 5 on ARM NEON were compiled with Apple clang 3.0.

Several binary libraries were also benchmarked: Intel IPP 7 and Apple Accelerate. Because these libraries
are only available in binary form, they are compared against the icc builds of SFFT, FFTW 3.3 and SPIRAL,
because icc generally produced the fastest code.

1 Speed

The speed results are presented in subsections according to the SIMD extensions: SSE, AVX and ARM
NEON.

1.1 SSE
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Figure 1: Performance comparison between SFFT and FFTW 3.3 in estimate mode on SSE machines
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Figure 2: Performance comparison between SFFT and FFTW 3.3 in patient mode on SSE machines
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Figure 3: Performance comparison between SFFT and SPIRAL on SSE machines. Although SPIRAL
is faster when compiled with clang 1.1, Figure 5 shows that SFFT is faster than SPIRAL when compiled
with clang 3.0

Figure 1 summarizes the speed performance of SFFT against FFTW 3.3 running in estimate mode on Linux
machines with SSE. Twelve heatmaps are used to present data from di�erent con�gurations. The three
rows in the grid correspond to the three di�erent compilers used, while the four columns correspond to the
four di�erent architecture and �oating-point precision pairs. Within each heatmap, the rows correspond to
di�erent machines, and the columns correspond to di�erent sizes of transform (21 through to 218). Shades
of green indicate that SFFT is faster for a particular point of data, while shades of yellow through to red
indicate that FFTW is faster; lighter shades indicate a small di�erence, while darker shades indicate a bigger
di�erence in performance. The scale for the colour map is computed separately for each of the 12 heatmaps
in the grid, so a particular colour in one heatmap is not directly comparable to the same colour in another
heatmap; the colours are only meant to indicate di�erences within each heatmap.

Similarily, Figure 2 compares SFFT to FFTW 3.3 running in patient mode, and Figure 3 compares
SFFT to SPIRAL. There are fewer columns in the heatmaps of Figure 3 because SPIRAL only computes
single-threaded FFTs for sizes 21 through to 213.

http://cnx.org/content/m43790/1.2/
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1.1.1 FFTW 3.3 in estimate mode

Figure 1 shows that SFFT is faster than FFTW 3.3 running in estimate mode in almost all cases over a
range of Intel x86 machines that implement SSE. The horizontal streaks of yellow-red that can be seen in
some heatmaps are outliers and likely caused by transient system processes that were running while SFFT
was being benchmarked. Similar streaks appear at the same locations in Figures Figure 2 and Figure 3.

1.1.2 FFTW 3.3 in patient mode
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Figure 4: Performance of FFTs on recent Sandy Bridge machines, with x86_64 SSE binaries. Compiler:
icc (a) Core i7-2600, single-precision (b) Core i7-2600, double-precision (c) Core i5-2557M, single-precision
(d) Core i5-2557M, double-precision

Figure 2 shows that SFFT is faster than FFTW 3.3 running in patient mode in the majority of cases over
a range of Intel x86 machines that implement SSE. SFFT was generally slightly slower than �tw3-patient
on older machines such as the Pentium 4's and the 1GHz Pentium M, while on the newer machines such
as the Sandy Bridge based Core i7-2600 and the Nehalem based Core i5-660, SFFT was clearly faster than
FFTW (see Figure 4). This could be explained by the fact that FFTW performs extensive instruction level
optimizations, such as scheduling, and that the older processors have smaller instruction and trace caches.

http://cnx.org/content/m43790/1.2/
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1.1.3 SPIRAL
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Figure 5: Performance of clang-compiled x86_64 SSE FFTs on an Intel Core2 Duo P8600 (a) Single-
precision, clang 1.1 (b) Double-precision, clang 1.1 (c) Single-precision, clang 3.0 (d) Double-precision,
clang 3.0

The last row of Figure 3 shows that SFFT is generally slower than SPIRAL when both libraries are compiled
with clang 1.1. However, with more recent releases of clang, which do much more code optimization, the
situation is reversed, as shown in Figure 5. In some cases SPIRAL compiled with clang 3.0 is slower than
SPIRAL compiled with clang 1.1, while SFFT is generally faster when compiled with clang 3.0. This
demonstrates that the speed of automatically tuned SPIRAL code is speci�c to certain compilers.

SPIRAL's double-precision performance is slightly better than SFFT when compiled with icc or gcc,
while SFFT's single-precision code is faster than SPIRAL on recent machines, and of similar speed on older
machines.

1.2 AVX

Of the machines that were used for benchmarks, only two supported AVX: the Macbook Air 4,2 with an Intel
Core i5-2557M, and a Linux machine with an Intel Core i7-2600. Figure 6 shows that SFFT is clearly faster
than FFTW up until about 1024 points, while performance between the two is similar for larger transforms.

Results for Intel IPP are also plotted in Figure 6, but only for the Core i7-2600. IPP did not detect the
existence of AVX on the Core i5-2557M, and instead used SSE, as plotted in Figure 4. Apple vDSP does
not support AVX, and so SSE vDSP results for the Macbook Air 4,2's Core i5-2557M are also plotted in
Figure 4.

http://cnx.org/content/m43790/1.2/
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Figure 6: Performance of FFTs on recent Sandy Bridge machines, with x86_64 AVX binaries. Compiler:
icc (a) Core i7-2600, single-precision (b) Core i7-2600, double-precision (c) Core i5-2557M, single-precision
(d) Core i5-2557M, double-precision
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1.3 ARM NEON
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Figure 7: Performance of single-precision FFTs on ARM NEON devices running iOS. Compiler: Apple
clang 3.0 (a) Apple A4 (ARM Cortex-A8) (b) Apple A5 (ARM Cortex-A9)

SFFT and FFTW 3.3.1 were compiled with Apple clang 3.0 and benchmarked on an Apple iPod touch 4G
and an Apple iPad 2, which contain the Apple A4 and A5 SoCs respectively. The A4 implements the ARM
Cortex-A8, while the A5 implements the ARM Cortex-A9, both of which support ARM NEON.

Figure 7 shows that SFFT is easily faster than FFTW on both devices. This contradicts Frigo and
Johnson's claim that the performance of FFTW is portable, and tends to support the idea that it is possible
to write fast and portable code without exhaustive searches through the con�guration space of all possible
FFTs.

A considerable amount of e�ort was needed to work around several problems that were encountered when
targeting ARM NEON with Apple clang 3.0, and many of SFFT's primitive macros for NEON were written
in inline assembly code. Among the problems encountered when targeting ARM NEON with Apple clang
3.0:

1. There is no way of explicitly specifying memory alignment when using vector intrinsics;
2. Fused multiply-add/subtract intrinsics do not currently compile to the correct instructions because of

a bug in clang;
3. Clang's inline assembly front-end lacks the syntax and semantics to properly address the dual-size

aliased vector registers.

The above problems a�ect all FFT libraries equally, and it seems that portability depends critically on the
quality of the machine speci�c code and macros.

http://cnx.org/content/m43790/1.2/
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2 Accuracy
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Figure 8: Accuracy of FFTs on an Intel Core i7-2600. SFFT, FFTW and SPIRAL were compiled for
x86_64 with icc (a) SSE, single-precision (b) SSE, double-precision

The accuracy of each FFT was measured as per the methods in Benchmark methods3. The accuracy of
single and double precision FFTs on an Intel Core i7-2600 is plotted in Figure 8, and shows that the relative
RMS error for FFTW, SFFT and SPIRAL is within an acceptable range. Graphs for all other machines are
similar.

3 Setup time
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Figure 9: Setup times of FFTs on an Intel Core i7-2600. SFFT, FFTW and SPIRAL were compiled
for x86_64 with icc (a) SSE, single-precision (b) SSE, double-precision

Figure 9 shows that FFTW, in patient mode, requires several orders of magnitude more time to initialize
as it searches for a fast FFT con�guration. SPIRAL has a very fast setup time, because it is entirely

3"Benchmark Methods" <http://cnx.org/content/m43804/latest/>
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statically elaborated and needs no dynamic initialization. The setup time for SFFT is comparable to FFTW
in estimate mode, though SFFT's setup time begins to increase for transforms larger than 8192 points. This
is likely because of repeated calls to the complex exponential function as twiddle factor LUTs are elaborated;
no e�ort was made to optimize this setup code, and it is likely that it would be much faster if the calls to
the complex exponential function were optimized.

Graphs for all other machines are similar.

4 Binary size

Compared to other libraries, SFFT produced larger binaries for the benchmarks, because there is currently
no optimization performed between transforms contained in the same library. For 64-bit single precision
binaries on OS X with AVX, the size of the SFFT benchmark was approximately 2.8 megabytes while the
size of the FFTW benchmark was 1.8 megabytes.

5 Predicting performance

For each size of transform on a particular machine, SFFT chooses the fastest con�guration from a set of up to
eight possible con�gurations. Small transforms have only one option, which is a fully hard-coded transform,
while larger transforms have up to eight, which could include the four-step transform, and several variants
of the hard-coded leaf transform, where each variant corresponds to a particular size of leaf sub-transform
and size of body sub-transform, and for size-16 leaf sub-transforms, a streaming store variant is included
too. The decision of exactly which con�guration to use depends on the size of transform, the compiler, and
the characteristics of the host machine.

For the benchmarks in this chapter, SFFT used a calibration routine to choose the fastest con�guration.
The calibration data was collected, along with some data about the machine and the compiler, and used to
train a classi�er.

The data was processed into instances, with each instance having attributes for the size of the transform
and the precision, the size of each level of cache, the architecture and micro-architecture of the machine, the
SIMD extensions, the OS, the compiler used, and the CPU frequency. In total there were 3348 instances of
data, each of which had 12 attributes.

Weka [9] was used to experiment with several classi�ers, and a REPTree classi�er with bagging was used
to train a model. Using 10-fold cross-validation, the model correctly classi�ed 76.1% of the instances with
a weighted average precision of 74.8%, which tends to con�rm the existence of a relationship between the
characteristics of the machine and the performance of a particular FFT con�guration.

The accuracy of the classi�er is promising, and it has the potential to replace the calibration code in
SFFT. It is highly likely that if the noise in the data was reduced through the use of an isolated benchmarking
environment, the accuracy of the classi�er would increase. The accuracy would also likely bene�t from a
larger dataset collected from a larger range of benchmark machines.

http://cnx.org/content/m43790/1.2/
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6 Split-radix vs. conjugate-pair
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Figure 10: Ordinary split-radix versus conjugate-pair split-radix on an Intel Core i5-2557M. SFFT,
FFTW and SPIRAL were compiled for x86_64 with icc (a) SSE, single-precision (b) SSE, double-
precision

In order to quantify the gain in performance that might be attributable to the use of the conjugate-pair
algorithm, SFFT was retrospectively modi�ed to compute the FFT using the ordinary split-radix algorithm
as well as the conjugate-pair algorithm. The results of benchmarks between the two algorithms, as well as
FFTW and SPIRAL, are plotted in Figure 10.

Unexpectedly, the ordinary split-radix algorithm is faster than the conjugate-pair algorithm for some
smaller sizes of transform, but for transforms above a certain size, the conjugate-pair algorithm is faster by
a few hundred MFLOPS.

The performance advantage of the ordinary split-radix algorithm for smaller sizes of transforms is likely
due to shorter chains of dependent instructions where twiddle factors are loaded and used. Consider that
the ordinary split-radix algorithm separately loads two twiddle factors into two registers, and there are no
dependencies between these instructions, while the conjugate-pair algorithm must load one twiddle factor
and then duplicate it into another register, which does result in dependent instructions. Thus the ordinary
split-radix algorithm is faster for smaller transforms where memory bandwidth is not the limiting factor, but
when memory bandwidth does become the limiting factor, the conjugate-pair algorithm is faster.

In future, SFFT could exploit the performance advantage of the ordinary split-radix algorithm when
computing smaller sizes of transforms.

7 Applications of this work

This section provides an overview of how the techniques presented in this thesis may be applied to the
prime-factor algorithm, sparse Fourier transforms, and multi-threaded transforms.

7.1 Prime-factor algorithm

The techniques presented in this work rely on the fact that FFTs operating on signal lengths that are a
power-of-two can be factored into smaller power-of-two length components, which are computed in parallel
by being evenly divided into a number of SIMD vector registers that are a power-of-two length.

The prime-factor algorithm factors other lengths of FFTs into components that are co-prime in length,
and ultimately small prime components, which do not evenly divide into the power-of-two length SIMD
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registers, except in the special case where a SIMD register contains only one complex element (such is the
case with double-precision on SSE machines).

Because the prime components do not evenly divide into power-of-two length SIMD registers, the al-
gorithm level vectorization techniques presented in this work are not directly applicable. In contrast, the
auto-vectorization techniques used in SPIRAL [2], [6], [7] are performed at the instruction level, and are
applicable to the prime-factor algorithm, but as the results in Figure 4 show, the downside of SPIRAL's
lower level approach is that performance for power-of-two transforms scales poorly with the length of the
SIMD register.

7.2 Sparse Fourier transforms

The recently published Sparse FFT [4], [3] will bene�t from the techniques presented in this work because
the inner loops use small DFTs (e.g, 512 point for a certain 256k point sparse FFT), which are currently
computed with FFTW. Replacing FFTW with SFFT will almost certainly result in improved performance,
because SFFT is faster than both FFTW and Intel IPP for the applicable small sizes of transform on an
Intel Core i7-2600 (see Figure 6).

Version 2.0 of the Sparse FFT code is scalar, and would bene�t greatly from explicitly describing the
computation with SIMD intrinsics. However, a key di�erence between the sparse Fourier transform and
other FFTs is the use of conditional branches on the input signal data. This has performance implications
on all machines, but it is worth noting that some machines will be drastically a�ected by this, such as the
ARM Cortex-A8, where the SIMD pipeline is located behind the main pipeline, resulting in fast transfers
from the main CPU unit to the SIMD pipeline, but large penalties when SIMD registers or �ags are accessed
by the main CPU unit.

http://cnx.org/content/m43790/1.2/
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7.3 Multi-threaded transforms
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Figure 11: Speed of multi-threaded four-step algorithm running on an Intel Core i5-2557M with four
threads. The algorithm decomposes transforms into smaller single-threaded components, which are
computed above with three di�erent implementations. All code was compiled with icc for x86_64 with
SSE.

MatrixFFT has recently shown that the four-step algorithm [1], designed to e�ciently use hierarchical or
external memory on Cray machines in the 1980's, is useful for computing large multi-threaded transforms
on modern machines, providing performance far surpassing that of FFTW's multi-threaded performance [8].

The four-step algorithm decomposes a transform of size N into a two-dimensional array of size n1 × n2

where N = n1n2, and n1 = n2 =
√

N (or close) often obtains the best performance.
The four-steps of the algorithm are:

1. Compute n1 FFTs of length n2 along the columns of the array;
2. Multiply each element of the array with ωij

N , where i and j are the array coordinates;
3. Transpose the array;
4. Compute n2 FFTs of length n1 along the columns of the array.

Each step can be divided amongst a pool of threads, with a synchronisation barrier between the third
and fourth steps. The transforms in steps one and four operate on sequential data, and if they are small
enough, they are not subject to bandwidth limitations (and if they are not small enough, they can be further
decomposed with the four-step algorithm until they are small enough). The bandwidth bottleneck does not
disappear, but it is factored out into the transpose in step three, and because of this, the performance of
the small single-threaded 1D transforms used in steps one and four correlate with the overall multi-threaded
performance. A simple multi-threaded implementation of the four-step algorithm was benchmarked with
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SFFT and FFTW transforms, and the results are shown in Figure 11, which tends to con�rm that the
performance of single-threaded transforms for steps one and four translates to the overall multi-threaded
performance when using the four-step algorithm.

8 Similar work

Aside from Bernstein's FFT library, which was designed in the days of scalar microprocessors and has not
been updated since 1999, there have been a few other challenges to the automatically adaptive approach of
FFTW, but none present concrete results that de�nitively dismiss the idea. Most recently, Vasilios et al.
presented an approach that uses the characteristics of the host machine to choose good FFT parameters at
run time [5], but their approach has several issues that render it almost irrelevant. First, the approach uses
optimizations that only apply to scalar machines, viz. twiddle factor symmetries are exploited to compress
the twiddle LUTs, and arithmetic is avoided when twiddle factors contains zeros or ones. The vast majority
of microprocessors, even those found in mobile devices such as phones, feature SIMD extensions, and so an
approach that is limited to scalar arithmetic is of little consequence. Second, they benchmark the FFTs in a
most unusual way. Rather than repeat a large number of iterations of the FFT, they repeat a large number
of iterations of a binary that initializes and then executes only one FFT; such an approach is by no means
representative of applications where the performance of the FFT is a concern, and is more a measurement
of the initialization time rather than the FFT.
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