
Connexions module: m44153 1

Java OOP: Objects and

Encapsulation
∗

Richard Baldwin

This work is produced by The Connexions Project and licensed under the

Creative Commons Attribution License †

Abstract

Baldwin kicks o� a new miniseries covering the necessary and most signi�cant aspects of OOP using

Java. He begins with encapsulation and objects.

1 Table of Contents

• Preface (p. 1)

· Essence (p. 1)
· Viewing tip (p. 2)

* Listings (p. 2)

• Preview (p. 2)
• Discussion and sample code (p. 2)
• Summary (p. 7)
• What's next? (p. 8)
• Miscellaneous (p. 8)

2 Preface

This module is the �rst in a series of modules designed to teach you about the essence of Object-Oriented
Programming (OOP) using Java.

2.1 Essence

My dictionary provides several de�nitions for the word essence. Among those de�nitions are the following:

• The property necessary to the nature of a thing
• The most signi�cant property of a thing

∗Version 1.1: Jul 27, 2012 3:53 pm -0500
†http://creativecommons.org/licenses/by/3.0/

http://cnx.org/content/m44153/1.1/



Connexions module: m44153 2

Thus, this miniseries will describe and discuss the necessary and most signi�cant aspects of OOP using Java.
In other words, I will discuss the essence of OOP using Java. I will attempt to provide that information in
a high-level format, devoid of any requirement to understand detailed Java syntax. In those cases where an
understanding of Java syntax is required, I will attempt to provide the necessary syntax information in the
form of supplementary notes.

Therefore, if you have a general understanding of computer programming, you should be able to read
and understand the modules in this miniseries, even if you don't have a strong background in the Java
programming language.

2.2 Viewing tip

I recommend that you open another copy of this document in a separate browser window and use the
following links to easily �nd and view the listings while you are reading about them.

2.2.1 Listings

• Listing 1 (p. 6) . Instantiating a new Radio object.
• Listing 2 (p. 7) . Calling the playStation method.

3 Preview

In order to understand OOP, you need to understand the following three concepts:

• Encapsulation
• Inheritance
• Polymorphism

This module will concentrate on encapsulation. Encapsulation will be used as a springboard for a discussion
of objects.

A description of an object-oriented program will be provided, along with a description of an object, and
how it relates to encapsulation.

In order to relate object-oriented programming to the real world, a car radio will be used to illustrate and
discuss several aspects of software objects. For example, you will learn that car radios, as well as software
objects, have the ability to store data, along with the ability to modify or manipulate that data.

You will learn that car radios, as well as software objects, have the ability to accept messages and to
perform an action, modify their state, return a value, or some combination of the above.

You will learn some of the jargon used in OOP, including persistence, state, messages, methods, and
behaviors.

You will learn where objects come from, and you will learn that a class is a set of plans that can be used
to construct objects. You will learn that a Java object is an instance of a class.

You will see a little bit of Java code, used to create an object, and then to send a message to that object
(invoke a method on the object).

You will learn about Java references and reference variables. You will also learn a little about memory
allocation for objects and variables in Java.

4 Discussion and sample code

Purpose of the miniseries

As mentioned earlier, I will describe and discuss the necessary and most signi�cant aspects of OOP using
Java.

The three pillars

http://cnx.org/content/m44153/1.1/



Connexions module: m44153 3

Most books on OOP will tell you that in order to understand OOP, you need to understand the following
three concepts:

• Encapsulation
• Inheritance
• Polymorphism

I agree with that assessment.
(Some books will also add abstraction and/or late binding to the list. I tend to think of these two topics

as being included in one or more of the three concepts listed above.)
Begin with encapsulation

Generally, speaking, these three concepts increase in di�culty going down the list from top to bottom.
Therefore, I will begin with Encapsulation and work my way down the list in successive modules.

What is an Object-Oriented Program?

Many authors would answer this question something like the following:
An Object-Oriented Program consists of a group of cooperating objects, exchanging messages, for the

purpose of achieving a common objective.
What is an object?

An object is a software construct that encapsulates data, along with the ability to use or modify that
data, into a software entity.

What is encapsulation?

An interesting description of encapsulation was provided in an article by Rocky Lhotka regarding VB.NET.
That description reads as follows:

"Encapsulation is the concept that an object should totally separate its interface from its implementation.
All the data and implementation code for an object should be entirely hidden behind its interface.

The idea is that we can create an interface (Public methods in a class) and, as long as that interface
remains consistent, the application can interact with our objects. This remains true even if we entirely
rewrite the code within a given method thus the interface is independent of the implementation."

I like this description, so I won't try to improve on it. However, I will try to illustrate it in the paragraphs
that follow.

A real-world analogy

Abstract concepts, such as the concept of an object or encapsulation, can often be best understood by
comparing them to real-world analogies. One imperfect, but fairly good analogy to a software object is the
radio in your car.

The ability to store data

Your car radio probably has the ability to store data, and to allow you to use and modify that data at
will. (However, you can only use and modify that data through use of the human interface that is provided
by the manufacturer of the radio.)

The data that can be stored in your car radio probably includes a list of �ve or more frequencies that
correspond to your favorite radio stations.

Using the stored data

The radio provides a mechanism (human interface) that allows you to use the data stored therein.
When you press one of the frequency-selector buttons on the front of the radio, the radio automatically

tunes itself to the frequency corresponding to that button. (In this case, you, the user, are sending a
message to the radio object asking it to perform a particular action.)

If you have previously stored a favorite frequency in the storage location corresponding to that button,
pressing the button (sending the message) will cause the radio station transmitting at that frequency to
be heard through the radio's speakers.

If you have not previously stored a favorite frequency in the storage location corresponding to that button,
you will probably only hear static. (That doesn't mean that the radio object failed to respond correctly to
the message. It simply means that its response was based on bad data.)

http://cnx.org/content/m44153/1.1/



Connexions module: m44153 4

Modifying the stored data

The human interface also makes it possible for you to store or modify those �ve or more frequency values.
This is done in di�erent ways for di�erent radios. On my car radio, the procedure is:

• Manually tune the radio to the desired frequency
• Press one of the buttons and hold it down for several seconds.

When the radio beeps, I know that the new frequency value has been stored in a storage location that
corresponds to that particular button.

Please change your state

What I have done here is to send a message to the radio object asking it to change its state. The beep
that I hear could be interpreted as the radio object returning a value back to me indicating that the mission
has been accomplished. (Alternately, we might say that the radio object sent a message back to me.)

We say that an object has changed its state when one or more data values stored in the object have been
modi�ed.

We also say that when an object responds to a message, it will usually perform an action, change its
state, return a value, or some combination of the above.

Please perform an action

Following this, when I press that button (send a message) , the radio object will be automatically tuned
to that frequency.

note: Historical note: While the ability to cause your car radio to remember your list
of favorite stations may seem like a miracle of modern digital electronics, the truth is that radios
had this capability long before they contained digital electronics. My �rst car had a radio that
accomplished this feat using strings, pulleys, and levers.

As I recall, in order to set the frequency for a button, I had to manually tune the radio to a station
by turning a knob, pull one of the buttons out about a quarter of an inch, and then push it in again.
From that point until I did the same thing again, whenever I pressed that button, some kind of a
mechanical contraption caused a big rotary capacitor to turn just the right amount to tune for a
particular radio station.

Also, I remember my grandfather having a table-model radio in the early 1940's that had radio
buttons. He used them to select his favorite stations, as he surfed the airwaves.

(Interestingly, the term radio button has now become a part of programming jargon, signifying
certain visual components used in graphical user interfaces.)

Enough of that, now back to my modern car radio

If I drive to Dallas and press a button that I have associated with a particular radio station in Austin,
I will probably hear static. In that case, I may want to change the frequency value associated with that
button. I can follow the same procedure described earlier to set the frequency value associated with that
button to correspond to one of the radio stations in Dallas. (Again, I would be sending a message to the
radio object asking it to change its state.)

Jargon

As you can see from the above discussion, the world of OOP is awash with jargon, and the ability to
translate the jargon is essential to an understanding of the published material on OOP. Therefore, as we
progress through this series of modules, I will introduce you to some of that jargon and try to help you
understand the meaning of the jargon.

Persistence

The ability of your car radio to remember your list of favorite stations is often referred to as persistence.
An object that has the ability to store and remember values is often said to have persistence.

State

http://cnx.org/content/m44153/1.1/



Connexions module: m44153 5

It is often said that the state of an object at a particular point in time is determined by the values
stored in the object. In our analogy, even if we own identical radios, unless the two of us have the same list
of favorite radio stations, associated with the same combination of buttons, the state of your radio object at
any particular point in time will be di�erent from the state of my radio object.

note: Identical objects with identical states: It is perfectly OK for the two of us to own
identical radios and to cause the two radio objects to contain the same list of frequencies. Even
if two objects have the same state at the same time, they are still separate and distinct objects.
While this is obvious in the real world of car radios, it may not be quite as obvious in the virtual
world of computer programming.

Sending a message

A person who speaks in OOP-speak might say that pressing one of the frequency-selector buttons on the
front of the radio sends a message to the radio object, asking it to perform an action (tune to a particular
station) . That person might also say that storing a new frequency that corresponds to a particular button
entails sending a message to the radio object asking it to change its state.

Invoking or calling a method

Java-speak is a little more speci�c than general OOP-speak. In Java-speak, we might say that pressing
one of the selector buttons on the front of the radio invokes or calls a method on the radio object. The
behavior of the method is to cause the object to perform an action.

As a practical matter, the physical manifestation of sending a message to an object in Java is to cause
that object to execute one of its methods.

Similarly, we might say that storing a new frequency that corresponds to a particular button invokes a
setter method on the radio object.

(In an earlier paragraph, I said that I could follow a speci�c procedure to set the frequency value
associated with a button to correspond to one of the radio stations in Dallas. Note the use of the words set
and setter in this jargon.)

Behavior

In addition to state, objects are often also said to have behavior . The overall behavior of an object is
determined by the combined behaviors of its individual methods.

For example, one of the behaviors exhibited by our radio object is the ability to play the radio station
at a particular frequency. When a frequency is selected by pressing a selector button, the radio knows how
to translate the radio waves at that frequency into audio waves compatible with our range of hearing, and
to send those audio waves out through the speakers.

Thus, the radio object behaves in a speci�c way in response to a message asking it to tune to a particular
frequency.

Where do objects come from?

In order to mass-produce car radios, someone must �rst create a set of plans, (drawings, or blueprints)
for the radio. Once the plans are available, the manufacturing people can produce millions of nearly identical
radios.

A class de�nition is a set of plans

The same is true for software objects. In order to create a software object in Java, it is necessary for
someone to �rst create a plan.

In Java, we refer to that plan as a class .
The class is de�ned by a Java programmer. Once the class de�nition is available, that programmer, (or

other programmers) , can use it to produce millions of nearly identical objects.
(While millions may sound like a lot of objects, I'm con�dent that since Java was released into the

programming world around 1997, Java programmers around the world have created millions of objects using
the standard Java class named Button .)

An instance of a class

If we were standing at the output end of the factory that produces car radios, we might pick up a
brand new radio and say that it is an instance of the plans used to produce the radio. (Unless they were

http://cnx.org/content/m44153/1.1/



Connexions module: m44153 6

object-oriented programmers, the people around us might think we were a little odd when they hear us say
that.)

However, it is common jargon to refer to a software object as an instance of a class.
To instantiate an object

Furthermore, somewhere along the way, someone turned the word instance into a verb, and it is also
common jargon to say that when creating a new object, we are instantiating an object.

A little bit of code

It is time to view a little bit of Java code.
Assuming that you have access to a class de�nition, there are several di�erent ways that you can create

an object in Java. The most common way is using syntax similar to that shown in Listing 1 (p. 6) below.

Listing 1: Instantiating a new Radio object.

Radio myObjRef = new Radio();

What does this mean?

Technically, the expression on the right-hand side of the equal sign in Listing 1 (p. 6) applies the new
operator to a constructor for the class named Radio in order to cause the new object to come into being
and to occupy memory.

(Su�ce it at this point to say that a constructor is code that assists in the creation of an object according
to the plans contained in a class de�nition. The primary purpose of a constructor is to provide initial values
for the new object, but the constructor is not restricted to that behavior alone.)

A reference to the object

The right-hand expression in Listing 1 (p. 6) returns a reference to the new object.
What can you do with a reference?

The reference can later be used to send messages to the new object (call methods belonging to the new
object) .

Saving the reference

In order to use the reference later, it is necessary to save it for later use.
The expression on the left-hand side of the equal sign in Listing 1 (p. 6) declares a variable of the type

Radio named myObjRef .
(Because this type of variable will ultimately be used to store a reference to an object, we often refer to

it by the term reference variable .)
What does this mean?

Declaring a variable causes memory to be set aside for use by the variable. Values can then be stored in
that memory space and accessed later by calling up the name given to the variable when it was declared.

Assignment of values

The equal sign in Listing 1 (p. 6) causes the object's reference returned by the right-hand expression to
be assigned to, or saved as a value in, the reference variable named myObjRef (created by the left-hand
expression) .

Memory allocation

Once the code in Listing 1 (p. 6) has �nished execution, two distinct and di�erent chunks of memory
have been allocated and populated.

One (potentially large) chunk of memory has been allocated (by the right-hand expression) to contain
the object itself. This chunk of memory has been populated according to the plans contained in the de�nition
of the class named Radio .

The other chunk of memory is a relatively small chunk allocated (by the left-hand expression) for the
reference variable containing the reference to the object.

Calling a method on the object

Assume that the de�nition of the Radio class de�nes a method with the following format (also assume
that this method is intended to simulate pressing a frequency-selector button on the front of the radio) :

http://cnx.org/content/m44153/1.1/



Connexions module: m44153 7

public void playStation(int stationNumber)
What does this mean?

Generally, in our radio-object context, this format implies that the behavior of the method named
playStation will cause the speci�c station identi�ed by an integer value passed as stationNumber to
be selected for play.

Public and void

The void return type means that the method doesn't return a value.
The public modi�er means that the button can be pressed by anyone in the car who can reach it.
(Car radios don't have frequency-selector buttons corresponding to the private modi�er in Java.)
The method signature

Continuing with out exposure of jargon, some authors would say that the following constitutes the
method signature for the method identi�ed above:

playStation(int stationNumber)
A little more Java code
Listing 2 (p. 7) shows the code from the earlier listing, expanded to cause the method named playSta-

tion to be called.

Listing 2: Calling the playStation method.

Radio myObjRef = new Radio();

myObjRef.playStation(3);

The �rst statement in Listing 2 (p. 7) is a repeat of the statement from the earlier listing. It is repeated
here simply to maintain continuity.

Method invocation syntax

The second statement in Listing 2 (p. 7) is new.
This statement shows the syntax used to send a message to a Java object, or to call a method on that

object (depending on whether you prefer OOP-speak or Java-speak) .
Join the method name to the reference

The syntax required to call a method on a Java object joins the name of the method to the object's
reference, using a period as the joining operator.

(In this case, the object's reference is stored in the reference variable named myObjRef . However,
there are cases where an object's reference may be created and used in the same expression without storing
it in a reference variable. We often refer to such an object as an anonymous object.)

Pressing a radio button

Given the previous discussion, the numeric value 3, passed to the method when it is called, simulates
the pressing of the third button on the front of the radio (or the fourth button if you elect to number your
buttons 0, 1, 2, 3, 4, 5) .

5 Summary

This is the �rst in a miniseries of modules that describe and discuss the necessary and most signi�cant
(essential) aspects of OOP using Java.

In order to understand OOP, you need to understand the following three concepts:

• Encapsulation
• Inheritance
• Polymorphism

http://cnx.org/content/m44153/1.1/



Connexions module: m44153 8

This module has concentrated on encapsulation. Encapsulation was used as a springboard for a discussion
of objects.

A description of an object-oriented program was provided, along with a description of an object, and
how it relates to encapsulation.

In order to relate object-oriented programming to the real world, a car radio was used to illustrate and
discuss several aspects of software objects.

You learned that car radios, as well as software objects, have the ability to store data, along with the
ability to modify or manipulate that data.

You learned that car radios, as well as software objects, have the ability to accept messages and to
perform an action, modify their state, return a value, or some combination of the above.

You learned some of the jargon used in OOP, including persistence, state, messages, methods, and
behaviors.

You learned where objects come from, and you learned that a class is a set of plans that can be used to
construct objects. You learned that a Java object is an instance of a class.

You saw a little bit of Java code, used to create an object, and then to send a message to that object
(invoke a method on the object).

You learned about Java references and reference variables. You learned a little about memory allocation
for objects and variables in Java.

6 What's next?

The next module in the miniseries will introduce you to the java class.
Continuing with the real-world example introduced in this module, the next module will provide a

complete Java program that simulates the manufacture and use of a car radio.
Along the way, you will see examples of (or read about) class de�nitions, constructing objects, saving

references to objects, setter methods, sending messages to objects, instance variables and methods, class
variables, array objects, persistence, and objects performing actions.

7 Miscellaneous

This section contains a variety of miscellaneous information.

note: Housekeeping material

• Module name: Essence - Objects and Encapsulation
• File: Java1600.htm
• Published: December 10, 2001
• Revised: June 6,2012
• Keywords:

· OOP
· object
· object-oriented programming
· method
· encapsulation
· inheritance
· polymorphism
· state
· behavior
· class
· instance
· instantiate
· constructor

http://cnx.org/content/m44153/1.1/



Connexions module: m44153 9

· variable
· reference
· public
· void
· signature

note: Disclaimers: Financial : Although the Connexions site makes it possible for you to
download a PDF �le for this module at no charge, and also makes it possible for you to purchase a
pre-printed version of the PDF �le, you should be aware that some of the HTML elements in this
module may not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have misappropriated copies of my modules from cnx.org, con-
verted them to Kindle books, and placed them for sale on Amazon.com showing me as the author.
I receive no compensation for those sales and don't know who does receive compensation. If you
purchase such a book, please be aware that it is a bootleg copy of a module that is freely available
on cnx.org.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

http://cnx.org/content/m44153/1.1/


