
Connexions module: m44156 1

Java OOP: Inheritance, Part 2
∗

Richard Baldwin

This work is produced by The Connexions Project and licensed under the

Creative Commons Attribution License †

Abstract

Baldwin shows you how to use method overriding to cause the behavior of a method inherited into a

subclass to be appropriate for an object instantiated from the subclass.

1 Table of Contents

• Preface (p. 1)

· Viewing tip (p. 1)

* Figures (p. 1)
* Listings (p. 2)

• Preview (p. 2)
• Discussion and sample code (p. 2)
• Summary (p. 6)
• What's next? (p. 7)
• Miscellaneous (p. 7)
• Complete program listing (p. 7)

2 Preface

This module is one of a series of modules designed to teach you about the essence of Object-Oriented
Programming (OOP) using Java.

2.1 Viewing tip

I recommend that you open another copy of this document in a separate browser window and use the
following links to easily �nd and view the �gures and listings while you are reading about them.

2.1.1 Figures

• Figure 1 (p. 6) . Program output.

∗Version 1.1: Jul 27, 2012 3:54 pm -0500
†http://creativecommons.org/licenses/by/3.0/

http://cnx.org/content/m44156/1.1/

Connexions module: m44156 2

2.1.2 Listings

• Listing 1 (p. 3) . The class named Radio.
• Listing 2 (p. 4) . Beginning of the Combo class.
• Listing 3 (p. 4) . The overridden playStation method.
• Listing 4 (p. 5) . The driver class.
• Listing 5 (p. 7) . The program named Radio03.

3 Preview

This module builds on the previous module. It is recommended that you study that module before embarking
on this module.

The program discussed in this module extends a Radio class to produce a new class that simulates an
upgraded car radio containing a tape player.

Method overriding is used to modify the behavior of a method of the Radio class named playStation

, to cause that method to behave appropriately when a tape has been inserted into the tape player.

4 Discussion and sample code

Inheriting methods and variables

When you de�ne a class that extends another class, an object instantiated from your new class will
contain all of the methods and all of the variables de�ned in your new class. The object will also contain all
of the methods and all of the variables de�ned in all of the superclasses of your new class.

The behavior of the methods

The behavior of the methods de�ned in a superclass and inherited into your new class may, or may not,
be appropriate for an object instantiated from your new class. If those methods are appropriate, you can
simply leave them alone.

Overriding to change behavior

If the behavior of one or more methods de�ned in a superclass and inherited into your new class is not
appropriate for an object of your new class, you can change that behavior by overriding the method in your
new class.

How do you override a method?

To override a method in your new class, simply reproduce the name, argument list, and return type of
the original method in a new method de�nition in your new class. Then provide a body for the new method.
Write code in that body to cause the behavior of the overridden method to be appropriate for an object of
your new class.

Here is a more precise description of method overriding taken from the excellent book entitled The
Complete Java 2 Certi�cation Study Guide , by Roberts, Heller, and Ernest:

"A valid override has identical argument types and order, identical return type, and is not less accessible
than the original method. The overriding method must not throw any checked exceptions that were not
declared for the original method."

Any method that is not declared �nal can be overridden in a subclass.
Overriding versus overloading

Don't confuse method overriding with method overloading. Here is what Roberts, Heller, and Ernest
have to say about overloading methods:

"A valid overload di�ers in the number or type of its arguments. Di�erences in argument names are not
signi�cant. A di�erent return type is permitted, but is not su�cient by itself to distinguish an overloading
method."

Car radios with built-in tape players

http://cnx.org/content/m44156/1.1/

Connexions module: m44156 3

This module presents a sample program that duplicates the functionality of the program named Radio02

discussed in the previous module. A class named Radio is used to de�ne the speci�cs of objects intended
to simulate car radios.

A class named Combo extends the Radio class to de�ne the speci�cs of objects intended to simulate
improved car radios having built-in tape players.

Modi�cation of the superclass

In the program named Radio02 in the previous module, it was necessary to modify the superclass
before extending it to provide the desired functionality. (The requirement to modify the superclass before
extending it seriously detracts from the bene�ts of inheritance.)

No superclass modi�cation in this module

The sample program (named Radio03) in this module uses method overriding to provide the same
functionality as the previous program named Radio02 , without any requirement to modify the superclass
before extending it. (Thus this program is more representative of the bene�ts available through inheritance
than was the program in the previous module.)

Overridden playStation method

In particular, a method named playStation , de�ned in the superclass named Radio , is overridden
in the subclass named Combo .

The original version of playStation in the superclass supports only radio operations. The overridden
version of playStation de�ned in the subclass supports both radio operations and tape operations.

(The behavior of the version of playStation de�ned in the Radio class is not appropriate for an
object of the Combo class. Therefore, the method was overridden in the Combo class to cause its
behavior to be appropriate for objects instantiated from the Combo class.)

A complete listing of the program is shown in Listing 5 near the end of this module.
The class named Radio

As usual, I will discuss the program in fragments.
Listing 1 (p. 3) shows the superclass named Radio . This code is shown here for easy referral. It

is identical to the code for the same class used in the program named Radio01 discussed in an earlier
module.

Listing 1: The class named Radio.

class Radio{

protected double[] stationNumber =

new double[5];

public void setStationNumber(

int index,double freq){

stationNumber[index] = freq;

}//end method setStationNumber

public void playStation(int index){

System.out.println(

"Playing the station at "

+ stationNumber[index]

+ " Mhz");

}//end method playStation

Will override playStation

The class named Combo (discussed below) will extend the class named Radio . The method named
playStation , shown in Listing 1 (p. 3) , will be overridden in the class named Combo .

http://cnx.org/content/m44156/1.1/

Connexions module: m44156 4

If you examine the code for the playStation method in Listing 1 (p. 3) , you will see that it assumes
radio operations only and doesn't support tape operations. That is the reason that it needs to be overridden.
(For example, it doesn't know that it should refuse to play a radio station when a tape is being played.)

The Combo class

Listing 2 (p. 4) shows the beginning of the class de�nition for the class named Combo . The Combo

class extends the class named Radio .

Listing 2: Beginning of the Combo class.

class Combo extends Radio{

private boolean tapeIn = false;

The tapeIn variable

The most important thing about the code in Listing 2 (p. 4) is the declaration of the instance variable
named tapeIn .

(In the program named Radio02 in the previous module, this variable was declared in the class named
Radio and inherited into the class named Combo . That was one of the undesirable changes required
for the class named Radio in that module.)

In this version of the program, the variable named tapeIn is declared in the subclass instead of in the
superclass. Thus, it is not necessary to modify the superclass before extending it.

The constructor

The constructor in Listing 2 (p. 4) is the same as in the previous program named Radio02 , so I won't
discuss it further.

The overridden playStation method

The overridden version of the method named playStation is shown in Listing 3 (p. 4) . As you can see,
this version of the method duplicates the signature of the playStation method in the superclass named
Radio , but provides a di�erent body.

Listing 3: The overridden playStation method.

public void playStation(int index){

System.out.println("Play Radio");

if(!tapeIn){//tapeIn is false

System.out.println(

" Playing the station at "

+ stationNumber[index]

+ " Mhz");

}else{//tapeIn is true

System.out.println(

" Remove the tape first");

}//end if/else

}//end method playStation

Aware of the tape system

This overridden version of the playStation method in Listing 3 (p. 4) is aware of the existence of the
tape system and behaves accordingly.

Depending on the value of the variable named tapeIn , this method will either

• tune and play a radio station, or
• display a message instructing the user to remove the tape.

http://cnx.org/content/m44156/1.1/

Connexions module: m44156 5

Which version of playStation is executed?

When the playStation method is called on an object of the Combo class, the overridden version of
the method (and not the original version de�ned in the superclass named Radio) is the version that is
actually executed.

Although not particularly obvious in this example, this is one of the important characteristics of runtime
polymorphism . When a method is called on a reference to an object, it is the type of the object (and not
the type of the variable containing the reference to the object) that is used to determine which version of
the method is actually executed.

Three other instance methods

The subclass named Combo de�nes three other instance methods:

• insertTape
• removeTape
• playTape

The code in these three methods is identical to the code in the methods having the same names in the
program named Radio02 in the previous module. I discussed that code in the previous module and won't
repeat that discussion here. You can view those methods in the complete listing of the program shown in
Listing 5 (p. 7) near the end of this module.

The driver class

Listing 4 (p. 5) shows the code for the driver class named Radio03.

Listing 4: The driver class.

public class Radio03{

//This class simulates the

// manufacturer and the human user

public static void main(

String[] args){

The code in Listing 4 (p. 5) is also identical to the code in the program named Radio02 discussed in the
previous module. Therefore, I won't discuss it in detail here.

A new object of the Combo class

I present this code here solely to emphasize that this code instantiates a new object of the Combo

class. This assures that the overridden version of the method named playStation will be executed by the
statements in Listing 4 (p. 5) that call the playStation method.

(Although it is not the case in Listing 4 (p. 5) , even if the reference to the object of type Combo

had been stored in a reference variable of type Radio , instead of a reference variable of type Combo ,
calling the playStation method on that reference would have caused the overridden version of the method
to have been executed. That is the essence of runtime polymorphism based on overridden methods in Java.)

Program output

This program produces the output shown in Figure 1 (p. 6) on the computer screen.

http://cnx.org/content/m44156/1.1/

Connexions module: m44156 6

Program output.

Combo object constructed

Play Radio

Playing the station at 93.5 Mhz

Insert Tape

Tape is in

Radio is off

Play Radio

Remove the tape first

Remove Tape

Tape is out

Radio is on

Play Radio

Playing the station at 93.5 Mhz

Play Tape

Insert the tape first

Insert Tape

Tape is in

Radio is off

Play Tape

Tape is playing

Remove Tape

Tape is out

Radio is on

Play Radio

Playing the station at 93.5 Mhz

Figure 1: Program output.

I will leave it as an exercise for the student to compare this output with the messages sent to the object
by the code in Listing 4 (p. 5) .

5 Summary

An object instantiated from a class that extends another class will contain all of the methods and all of the
variables de�ned in the subclass, plus all of the methods and all of the variables inherited into the subclass.

The behavior of methods inherited into the subclass may not be appropriate for an object instantiated
from the subclass. You can change that behavior by overriding the method in the de�nition of the subclass.

To override a method in the subclass, reproduce the name, argument list, and return type of the original
method in a new method de�nition in the subclass. Make sure that the overridden method is not less
accessible than the original method. Also, make sure that it doesn't throw any checked exceptions that were

http://cnx.org/content/m44156/1.1/

Connexions module: m44156 7

not declared for the original method.
Provide a body for the overridden method, causing the behavior of the overridden method to be appro-

priate for an object of the subclass. Any method that is not declared �nal can be overridden in a subclass.
The program discussed in this module extends a Radio class to produce a subclass that simulates an
upgraded car radio containing a tape player.

Method overriding is used to modify the behavior of an inherited method named playStation to cause
that method to behave appropriately when a tape has been inserted into the radio.

Method overriding is di�erent from method overloading. Method overloading will be discussed in the
next module.

6 What's next?

In the next module, I will explain the use of overloaded methods for the purpose of achieving compile-time
polymorphism.

7 Miscellaneous

This section contains a variety of miscellaneous information.

note: Housekeeping material

• Module name: OOP 101, Inheritance, Part 2
• File: Java1606.htm
• Published: January 28, 2002
• Revised: June 8, 2012
• Keywords:

· method overriding
· method overloading

note: Disclaimers: Financial : Although the Connexions site makes it possible for you to
download a PDF �le for this module at no charge, and also makes it possible for you to purchase a
pre-printed version of the PDF �le, you should be aware that some of the HTML elements in this
module may not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have misappropriated copies of my modules from cnx.org, con-
verted them to Kindle books, and placed them for sale on Amazon.com showing me as the author.
I receive no compensation for those sales and don't know who does receive compensation. If you
purchase such a book, please be aware that it is a bootleg copy of a module that is freely available
on cnx.org.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

8 Complete program listing

A complete listing of the program is shown in Listing 5 (p. 7) below.

Listing 5: The program named Radio03.

http://cnx.org/content/m44156/1.1/

Connexions module: m44156 8

Copyright 2002, R.G.Baldwin

Simulates the manufacture and use of a

combination car radio and tape player.

Uses method overriding to avoid

modifying the class named Radio.

This program produces the following

output on the computer screen:

Combo object constructed

Play Radio

Playing the station at 93.5 Mhz

Insert Tape

Tape is in

Radio is off

Play Radio

Remove the tape first

Remove Tape

Tape is out

Radio is on

Play Radio

Playing the station at 93.5 Mhz

Play Tape

Insert the tape first

Insert Tape

Tape is in

Radio is off

Play Tape

Tape is playing

Remove Tape

Tape is out

Radio is on

Play Radio

Playing the station at 93.5 Mhz

**************************************/

public class Radio03{

//This class simulates the

// manufacturer and the human user

public static void main(

String[] args){

Combo myObjRef = new Combo();

myObjRef.setStationNumber(3,93.5);

myObjRef.playStation(3);

myObjRef.insertTape();

myObjRef.playStation(3);

myObjRef.removeTape();

myObjRef.playStation(3);

myObjRef.playTape();

myObjRef.insertTape();

myObjRef.playTape();

http://cnx.org/content/m44156/1.1/

Connexions module: m44156 9

myObjRef.removeTape();

myObjRef.playStation(3);

}//end main

}//end class Radio03

//===================================//

class Radio{

//This class simulates the plans from

// which the radio object is created.

// This code is the same as in the

// program named Radio01.

protected double[] stationNumber =

new double[5];

public void setStationNumber(

int index,double freq){

stationNumber[index] = freq;

}//end method setStationNumber

//This version of playStation doesn't

// accommodate tape operations.

public void playStation(int index){

System.out.println(

"Playing the station at "

+ stationNumber[index]

+ " Mhz");

}//end method playStation

}//end class Radio

//===================================//

class Combo extends Radio{

private boolean tapeIn = false;

//---------------------------------//

public Combo(){//constructor

System.out.println(

"Combo object constructed");

}//end constructor

//---------------------------------//

//Overridden playStation method. This

// overridden version accommodates

// tape operations.

public void playStation(int index){

System.out.println("Play Radio");

if(!tapeIn){

System.out.println(

" Playing the station at "

+ stationNumber[index]

http://cnx.org/content/m44156/1.1/

Connexions module: m44156 10

+ " Mhz");

}else{

System.out.println(

" Remove the tape first");

}//end if/else

}//end method playStation

//---------------------------------//

public void insertTape(){

System.out.println("Insert Tape");

tapeIn = true;

System.out.println(

" Tape is in");

System.out.println(

" Radio is off");

}//end insertTape method

//---------------------------------//

public void removeTape(){

System.out.println("Remove Tape");

tapeIn = false;

System.out.println(

" Tape is out");

System.out.println(

" Radio is on");

}//end removeTape method

//---------------------------------//

public void playTape(){

System.out.println("Play Tape");

if(!tapeIn){

System.out.println(

" Insert the tape first");

}else{

System.out.println(

" Tape is playing");

}//end if/else

}//end playTape

}//end class combo

-end-

http://cnx.org/content/m44156/1.1/

