
Connexions module: m44168 1

Java OOP: Polymorphism, Type

Conversion, Casting, etc.
∗

Richard Baldwin

This work is produced by The Connexions Project and licensed under the

Creative Commons Attribution License †

Abstract

Baldwin teaches you about assignment compatibility, type conversion, and casting for both primitive

and reference types. He also teaches you about the relationship between reference types, method calls,

and the location in the class hierarchy where a method is de�ned.

1 Table of Contents

• Preface (p. 1)

· Viewing tip (p. 1)

* Listings (p. 2)

• Preview (p. 2)
• Discussion and sample code (p. 2)
• Summary (p. 7)
• What's next? (p. 8)
• Miscellaneous (p. 8)
• Complete program listings (p. 9)

2 Preface

This module is one of a series of modules designed to teach you about the essence of Object-Oriented
Programming (OOP) using Java.

2.1 Viewing tip

I recommend that you open another copy of this document in a separate browser window and use the
following links to easily �nd and view the listings while you are reading about them.

∗Version 1.1: Jul 27, 2012 3:57 pm -0500
†http://creativecommons.org/licenses/by/3.0/

http://cnx.org/content/m44168/1.1/

Connexions module: m44168 2

2.1.1 Listings

• Listing 1 (p. 4) . De�nition of the class named A.
• Listing 2 (p. 5) . De�nition of the class named B.
• Listing 3 (p. 5) . De�nition of the class named C.
• Listing 4 (p. 5) . Beginning of the class named Poly02.
• Listing 5 (p. 6) . An illegal operation.
• Listing 6 (p. 6) . An ine�ective downcast.
• Listing 7 (p. 6) . A downcast to type B.
• Listing 8 (p. 7) . Declare a variable of type B.
• Listing 9 (p. 7) . Cannot be assigned to type C.
• Listing 10 (p. 7) . Another failed attempt.
• Listing 11 (p. 9) . Complete program listing.

3 Preview

This module discusses type conversion for both primitive and reference types.
A value of a particular type may be assignment compatible with variables of other types, in which case

the value can be assigned directly to the variable. Otherwise, it may be possible to perform a cast on the
value to change its type and assign it to the variable as the new type.

With regard to reference types, whether or not a cast can be successfully performed

• depends on the relationships of the classes involved in the class hierarchy.

A reference to any object can be assigned to a reference variable of the type Object , because the Object
class is a superclass of every other class.

When we cast a reference along the class hierarchy in a direction from the root class Object toward
the leaves, we often refer to it as a downcast .

Whether or not a method can be called on a reference to an object depends on

• the current type of the reference, and
• the location in the class hierarchy where the method is de�ned.

In order to use a reference of a class type to call a method, the method must be de�ned at or above that
class in the class hierarchy.

A sample program is provided that illustrates much of the detail involved in type conversion, method
calls, and casting with respect to reference types.

4 Discussion and sample code

What is polymorphism?
As a quick review, the meaning of the word polymorphism is something like one name, many forms .
How does Java implement polymorphism?
Polymorphism manifests itself in Java in the form of multiple methods having the same name.
In some cases, multiple methods have the same name, but di�erent formal argument lists (overloaded

methods, which were discussed in a previous module) .
In other cases, multiple methods have the same name, same return type, and same formal argument list

(overridden methods) .
Three distinct forms of polymorphism
From a practical programming viewpoint, polymorphism manifests itself in three distinct forms in Java:

• Method overloading

http://cnx.org/content/m44168/1.1/

Connexions module: m44168 3

• Method overriding through inheritance
• Method overriding through the Java interface

I covered method overloading as one form of polymorphism in a previous module.
We need to backtrack
In this module, I will backtrack a bit and discuss the conversion of references from one type to another.
I will begin the discussion of polymorphism through method overriding and inheritance in the next

module. I will cover interfaces in a future module.
Assignment compatibility and type conversion
As a background for polymorphism, you need to understand something about assignment compatibility

and type conversion .
A value of a given type is assignment compatible with another type if

• a value of the �rst type
• can be successfully assigned to a variable of the second type.

Type conversion and the cast operator
In some cases, type conversion happens automatically. In other cases, type conversion must be forced

through the use of a cast operator .
A cast operator is a unary operator, which has a single right operand. The physical representation of

the cast operator is the name of a type inside a pair of matched parentheses, as in:

(int)

Applying a cast operator
Applying a cast operator to the name of a variable doesn't actually change the type of the variable.

However, it does cause the contents of the variable to be treated as a di�erent type for the evaluation of the
expression in which the cast operator is contained. Thus, the application of a cast operator is a short-term
event.

Primitive values and type conversion
Assignment compatibility issues come into play for both primitive types and reference types.
However, values of type boolean can only be assigned to variables of type boolean (you cannot change

the type of a boolean) .
Otherwise, a primitive value can be assigned to any variable of a type

• whose range is as wide or wider
• than the range of the type of the value.

In that case, the type of the value is automatically converted to the type of the variable.
(For example, types byte and short can be assigned to a variable of type int without

the requirement for a cast because type int has a wider range than either type byte or type
short .)

Conversion to narrower range
On the other hand, a primitive value of a given type cannot be assigned to a variable of a type with a

narrower range than the type of the value,

• unless the cast operator is used to force a type conversion.

Oftentimes, such a conversion will result in the loss of data, and that loss is the responsibility of the
programmer who performs the cast.

Assignment compatibility for references
Assignment compatibility, with respect to references, doesn't involve range issues, as is the case with

primitives. Instead, the reference to an object instantiated from a given class can be assigned to:

http://cnx.org/content/m44168/1.1/

Connexions module: m44168 4

• Any reference variable whose type is the same as the class from which the object was instantiated.

• Any reference variable whose type is a superclass of the class from which the object was instantiated.
• Any reference variable whose type is an interface that is implemented by the class from which the

object was instantiated.
• Any reference variable whose type is an interface that is implemented by a superclass of the class from

which the object was instantiated, and
• A few other cases involving the class and interface hierarchy.

Such an assignment does not require the use of a cast operator.
Type Object is completely generic
A reference to any object can be assigned to a reference variable of the type Object , because the

Object class is a superclass of every other class.
Converting reference types with a cast
Assignments of references, other than those listed above (p. 4) , require the use of a cast operator to

purposely change the type of the reference.
Doesn't work in all cases
However, it is not possible to perform a successful cast to convert the type of a reference in all cases.
Generally, a cast can only be performed among reference types that fall on the same ancestral line of

the class hierarchy, or on an ancestral line of an interface hierarchy. For example, a reference cannot be
successfully cast to the type of a sibling or a cousin in the class hierarchy.

Downcasting
When we cast a reference along the class hierarchy in a direction from the root class Object toward

the leaves, we often refer to it as a downcast .
While it is also possible to cast in the direction from the leaves to the root, this happens automatically,

and the use of a cast operator is not required.
A sample program
The program named Poly02 , shown in Listing 11 (p. 9) near the end of the module, illustrates the

use of the cast operator with references.
When you examine that program, you will see that two classes named A and C each extend the class

named Object . Hence, we might say that they are siblings in the class hierarchy.
Another class named B extends the class named A . Thus, we might say that A is a child of

Object , and B is a child of A .
The class named A
The de�nition of the class named A is shown in Listing 1 (p. 4) . This class extends the class named

Object .
(Recall that it is not necessary to explicitly state that a class extends the class named Object . Any

class that does not explicitly extend some other class will automatically extend Object by default. The
class named A is shown to extend Object here simply for clarity of presentation.)

Listing 1: De�nition of the class named A.

class A extends Object{

//this class is empty

}//end class A

The class named A is empty. It was included in this example for the sole purpose of adding a layer of
inheritance to the class hierarchy.

The class named B
Listing 2 (p. 5) shows the de�nition of the class named B . This class extends the class named A .

http://cnx.org/content/m44168/1.1/

Connexions module: m44168 5

Listing 2: De�nition of the class named B.

class B extends A{

public void m(){

System.out.println("m in class B");

}//end method m()

}//end class B

The method named m()
The class named B de�nes a method named m() . The behavior of the method is simply to display

a message each time it is called.
The class named C
Listing 3 (p. 5) contains the de�nition of the class named C , which also extends Object .

Listing 3: De�nition of the class named C.

class C extends Object{

//this class is empty

}//end class C

The class named C is also empty. It was included in this example as a sibling class for the class named
A . Stated di�erently, it was included as a class that is not in the ancestral line of the class named B .

The driver class
Listing 4 (p. 5) shows the beginning of the driver class named Poly02 .

Listing 4: Beginning of the class named Poly02.

public class Poly02{

public static void main(String[] args){

Object var = new B();

An object of the class named B
The code in Listing 4 (p. 5) instantiates an object of the class B and assigns the object's reference to

a reference variable of type Object .
(It is important to note that the reference to the object of type B was not assigned to a reference

variable of type B . Instead, it was assigned to a reference variable of type Object .)
This assignment is allowable because Object is a superclass of B . In other words, the reference to

the object of the class B is assignment compatible with a reference variable of the type Object .
Automatic type conversion
In this case, the reference of type B is automatically converted to type Object and assigned to

the reference variable of type Object . (Note that the use of a cast operator was not required in this
assignment.)

Only part of the story
However, assignment compatibility is only part of the story. The simple fact that a reference is assignment

compatible with a reference variable of a given type says nothing about what can be done with the reference
after it is assigned to the reference variable.

An illegal operation
For example, in this case, the reference variable that was automatically converted to type Object cannot

be used directly to call the method named m() on the object of type B . This is indicated in Listing 5
(p. 6) .

http://cnx.org/content/m44168/1.1/

Connexions module: m44168 6

Listing 5: An illegal operation.

//var.m();

An attempt to call the method named m() on the reference variable of type Object in Listing 5 (p. 6)
resulted in a compiler error. It was necessary to convert the statement into a comment in order to get the
program to compile successfully.

An important rule
In order to use a reference of a class type to call a method, the method must be de�ned at or above that

class in the class hierarchy.
This case violates the rule
In this case, the method named m() is de�ned in the class named B , which is two levels down from

the class named Object .
When the reference to the object of the class B was assigned to the reference variable of type Object

, the type of the reference was automatically converted to type Object .
Therefore, because the reference is of type Object , it cannot be used directly to call the method

named m() .
The solution is a downcast
In this case, the solution to the problem is a downcast. The code in Listing 6 (p. 6) shows an attempt

to solve the problem by casting the reference down the hierarchy to type A .

Listing 6: An ine�ective downcast.

//((A)var).m();

Still doesn't solve the problem
However, this still doesn't solve the problem, and the result is another compiler error. Again, it was

necessary to convert the statement into a comment in order to get the program to compile.
What is the problem here?
The problem is that the downcast simply didn't go far enough down the inheritance hierarchy.
The class named A neither de�nes nor inherits the method named m() . The method named m()

is de�ned in class B , which is a subclass of class A .
Therefore, a reference of type A is no more useful than a reference of type Object insofar as calling

the method named m() is concerned.
The real solution
The solution to the problem is shown in Listing 7 (p. 6) .

Listing 7: A downcast to type B.

((B)var).m();

The code in Listing 7 (p. 6) casts (converts) the reference value contained in the Object variable named
var down to type B .

The method named m() is de�ned in the class named B . Therefore, a reference of type B can be
used to call the method.

The code in Listing 7 (p. 6) compiles and executes successfully. This causes the method named m() to
execute, producing the following output on the computer screen.

m in class B

http://cnx.org/content/m44168/1.1/

Connexions module: m44168 7

A few odds and ends
Before leaving this topic, let's look at a couple more issues. The code in Listing 8 (p. 7) declares and

populates a new variable of type B .

Listing 8: Declare a variable of type B.

B v1 = (B)var;

The code in Listing 8 also uses a cast to:

• Convert the contents of the Object variable to type B
• Assign the converted reference to the new reference variable of type B.

A legal operation
This is a legal operation. In this class hierarchy, the reference to the object of the class B can be

assigned to a reference variable of the types B , A , or Object .
Cannot be assigned to type C
However, the reference to the object of the class B cannot be assigned to a reference variable of any

other type, including the type C . An attempt to do so is shown in Listing 9 (p. 7) .

Listing 9: Cannot be assigned to type C.

//C v2 = (C)var;

The code in Listing 9 (p. 7) attempts to cast the reference to type C and assign it to a reference variable
of type C .

A runtime error
Although the program will compile, it won't execute. An attempt to execute the statement in Listing 9

(p. 7) results in a ClassCastException at runtime. As a result, it was necessary to convert the statement
into a comment in order to execute the program.

Another failed attempt
Similarly, an attempt to cast the reference to type B and assign it to a reference variable of type C ,

as shown in Listing 10 (p. 7) , won't compile.

Listing 10: Another failed attempt.

//C v3 = (B)var;

The problem here is that the class C is not a superclass of the class named B . Therefore, a reference
of type B is not assignment compatible with a reference variable of type C .

Again, it was necessary to convert the statement into a comment in order to compile the program.

5 Summary

This module discusses type conversion for both primitive and reference types.
A value of a particular type may be assignment compatible with variables of other types.
If the type of a value is not assignment compatible with a variable of a given type, it may be possible to

perform a cast on the value to change its type and assign it to the variable as the new type. For primitive
types, this will often result in the loss of information.

Except for type boolean , values of primitive types can be assigned to any variable whose type represents
a range that is as wide or wider than the range of the value's type. (Values of type boolean can only be
assigned to variables of type boolean.)

With respect to reference types, the reference to an object instantiated from a given class can be assigned
to any of the following without the use of a cast:

http://cnx.org/content/m44168/1.1/

Connexions module: m44168 8

• Any reference variable whose type is the same as the class from which the object was instantiated.
• Any reference variable whose type is a superclass of the class from which the object was instantiated.
• Any reference variable whose type is an interface that is implemented by the class from which the

object was instantiated.
• Any reference variable whose type is an interface that is implemented by a superclass of the class from

which the object was instantiated.
• A few other cases involving the class and interface hierarchy.

Assignments of references, other than those listed above, require the use of a cast to change the type of the
reference.

It is not always possible to perform a successful cast to convert the type of a reference. Whether or not a
cast can be successfully performed depends on the relationship of the classes involved in the class hierarchy.

A reference to any object can be assigned to a reference variable of the type Object , because the
Object class is a superclass of every other class.

When we cast a reference along the class hierarchy in a direction from the root class Object toward
the leaves, we often refer to it as a downcast.

Whether or not a method can be called on a reference to an object depends on the current type of the
reference and the location in the class hierarchy where the method is de�ned. In order to use a reference of
a class type to call a method, the method must be de�ned at or above that class in the class hierarchy.

A sample program is provided that illustrates much of the detail involved in type conversion, method
invocation, and casting with respect to reference types.

6 What's next?

I will begin the discussion of runtime polymorphism through method overriding and inheritance in the next
module.

I will demonstrate that for runtime polymorphism, the selection of a method for execution is based on the
actual type of object whose reference is stored in a reference variable, and not on the type of the reference
variable on which the method is called.

7 Miscellaneous

This section contains a variety of miscellaneous information.

note: Housekeeping material

• Module name: OOP 101, Polymorphism, Type Conversion, Casting, etc.
• File: Java1610.htm
• Published: February 26, 2002
• Revised: July 25, 2012
• Keywords:

· assignment compatibility
· type conversion
· casting
· primitive types
· reference types

note: Disclaimers: Financial : Although the Connexions site makes it possible for you to
download a PDF �le for this module at no charge, and also makes it possible for you to purchase a
pre-printed version of the PDF �le, you should be aware that some of the HTML elements in this
module may not translate well into PDF.

http://cnx.org/content/m44168/1.1/

Connexions module: m44168 9

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have misappropriated copies of my modules from cnx.org, con-
verted them to Kindle books, and placed them for sale on Amazon.com showing me as the author.
I receive no compensation for those sales and don't know who does receive compensation. If you
purchase such a book, please be aware that it is a bootleg copy of a module that is freely available
on cnx.org.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

8 Complete program listings

A complete listing of the program is shown in Listing 11 (p. 9) below.

Listing 11: Complete program listing.

/*File Poly02.java

Copyright 2002, R.G.Baldwin

This program illustrates downcasting

Program output is:

m in class B

**************************************/

class A extends Object{

//this class is empty

}//end class A

//===================================//

class B extends A{

public void m(){

System.out.println("m in class B");

}//end method m()

}//end class B

//===================================//

class C extends Object{

//this class is empty

}//end class C

//===================================//

public class Poly02{

public static void main(String[] args){

Object var = new B();

//Following will not compile

//var.m();

//Following will not compile

//((A)var).m();

http://cnx.org/content/m44168/1.1/

Connexions module: m44168 10

//Following will compile and run

((B)var).m();

//Following will compile and run

B v1 = (B)var;

//Following will not execute

//C v2 = (C)var;

//Following will not compile

//C v3 = (B)var;

}//end main

}//end class Poly02

-end-

http://cnx.org/content/m44168/1.1/

