

 [image: Java OOP: Polymorphism and Interfaces, Part 2]

 Java OOP: Polymorphism and Interfaces, Part 2
By: Richard Baldwin
Online: <http://cnx.org/content/m44196/1.1/>
This module is copyrighted by Richard Baldwin.
It is licensed under the Creative Commons Attribution License: http://creativecommons.org/licenses/by/3.0/
Module revised: 2012/07/27

Java OOP: Polymorphism and Interfaces, Part 2
By: Richard Baldwin
Online: <http://cnx.org/content/m44196/1.1/>
This module is copyrighted by Richard Baldwin.
It is licensed under the Creative Commons Attribution License: http://creativecommons.org/licenses/by/3.0/
Module revised: 2012/07/27

Java OOP: Polymorphism and Interfaces, Part 2

1.
Table of Contents

 	

Preface

	

 	

Viewing tip

 	

Listings

		

	

	

Preview

	

Discussion and sample code

	

Summary

	

What's next?

	

Miscellaneous

	

Complete program listing

2.

Preface

This module is one of a series of modules designed to teach you about Object-Oriented Programming (OOP) using Java.

Viewing tip

I recommend that you open another copy of this document in a separate
browser window and use the following links to easily find and view the listings while you are reading about them..

Listings

 	

Listing 1

. Definition of the interfaces named I1 and I2.

	

Listing 2

. Definition of the class named A.

	

Listing 3

. Definition of the class named B.

	

Listing 4

. Definition of the class named C.

	

Listing 5

. Beginning of the class named Poly06.

	

Listing 6

. Try unsuccessfully to call the method named q.

	

Listing 7

. Successfully call the method named q.

	

Listing 8

. Instantiate a new object of the class B.

	

Listing 9

. Try unsuccessfully to call the method named x.

	

Listing 10

. Successfully call the method named x.

	

Listing 11

. Call the toString method.

	

Listing 12

. Try unsuccessfully to call the method named p.

	

Listing 13

. Successfully call the method named p.

	

Listing 14

. A walk in the park.

	

Listing 15

. Complete program listing.

3.

Preview

Method overloading

I covered method overloading as one form of polymorphism

(compile-time polymorphism)

 in a previous module.

Method overriding and class inheritance

I discussed

runtime polymorphism

 implemented through method overriding and class inheritance in more than one previous module.

Using the Java interface

In this and the previous module, I am explaining runtime polymorphism as implemented using method overriding and the Java interface.

A very important concept

In my opinion, this is one of the most important concepts in Java OOP, and the one that seems to give students the greatest amount of difficulty. Therefore, I am trying to take it slow and easy. As usual, I am illustrating the concept using sample programs.

A skeleton program

In the previous module, I presented a simple skeleton program that illustrated many of the important aspects of polymorphic behavior based on the Java interface.

Multiple inheritance and the cardinal rule

I explained how the implementation of interfaces in Java is similar to multiple inheritance.

I explained the cardinal rule of interface implementation.

A new relationship

I explained that objects instantiated from classes that implement the same interface have a new relationship that goes beyond the relationship imposed by the standard class hierarchy.

One object, many types

I explained that due to the combination of the class hierarchy and the fact that a class can implement many different interfaces, a single object in Java can be treated as many different types. However, for any given type, there are restrictions on the methods that can be called on the object.

Many classes, one type

I explained that because different classes can implement the same interface, objects instantiated from different classes can be treated as a common interface type.

Interfaces are critical to Java programming

I suggested that there is little if anything useful that can be done in Java without understanding and using interfaces.

In support of this suggestion, I discussed several real-world examples of the use of the Java interface, including the Delegation Event Model and
the Model View Control paradigm.

Another sample program

In this module, I will present another sample program that will take you deeper into the world of polymorphism as implemented using the Java interface.

The sample program that I will discuss in this module will illustrate

(in a very basic form)

 some of the things that you can do with interfaces, along with some of the things that you cannot do with interfaces. In order to write programs that do something worthwhile, you will need to extend the concepts illustrated by this sample program into real-world requirements.

4.

Discussion and sample code

Now, let's take a look at a sample program named

Poly06

 that is much simpler than any of the real-world examples
	that you will see in future modules.

This program is designed to be very simple, while still illustrating runtime polymorphism using interfaces, class inheritance, and overridden methods.

You can view a complete listing of the program in

Listing 15

 near the end of the module.

Same structure as before

Note that this program has the same structure as

Poly05

 discussed in the previous module.

(I strongly recommend that you study the previous module before continuing with this module.)

 However, unlike the program in the previous module, the methods in this version of the program are not empty. When a method is called in this version, something happens.

(Admittedly not much happens. Text is displayed on the computer screen, but that is something.)

The interface definitions

Listing 1

 shows the definition of the two interfaces named

I1

 and

I2

.

Example 1.
 interface I1{
 public void p();
}//end interface I1

//===================================//

interface I2 extends I1{
 public void q();
}//end interface I2

Since the methods declared in an interface are not allowed to have a body, these interface definitions are identical to those shown in the program from the previous module.

The class named A

Similarly,

Listing 2

 shows the definition of the class named

A

 along with the definition of the method named

x

, and the overridden method named

toString

.

Example 2.
 class A extends Object{

 public String toString(){
 return "toString in A";
 }//end toString()
 //---------------------------------//

 public String x(){
 return "x in A";
 }//end x()
 //---------------------------------//
}//end class A

These two methods were also fully defined in the program from the previous module, so there is no change here either.

The method named B

Listing 3

 defines the class named

B

, which extends

A

, and implements

I2

.

Example 3.
 class B extends A implements I2{
 public void p(){
 System.out.println("p in B");
 }//end p()
 //---------------------------------//

 public void q(){
 System.out.println("q in B");
 }//end q();
 //---------------------------------//
}//end class B

Actually implements two interfaces

Although it isn't obvious from an examination of

Listing 3

 alone, the class named

B

 actually implements both

I2

 and

I1

. This is because the interface named

I2

 extends

I1

. Thus, the class named

B

 implements

I2

 directly, and implements

I1

 through interface inheritance.

The cardinal rule

In case you have forgotten it, the cardinal rule for implementing interfaces is:

If a class implements an interface, it must provide a concrete definition for all the methods declared by that interface, and all the methods inherited by that interface. Otherwise, the class must be declared abstract and the definitions must be provided by a class that extends the abstract class.

Must define two methods

As a result, the class named

B

 must provide concrete definitions for the methods

p

 and

q

.

(The method named p is declared in interface I1 and the method named q is declared in interface I2.)

As you can see from

Listing 3

, the behavior of each of these methods is to display a message indicating that it has been executed. This will be useful later to tell us exactly which method is executed when we exercise the objects in the

main

 method of the driver class.

The class named C

Listing 4

 shows the upgraded version of the class named

C

.

Example 4.
 class C extends Object implements I2{
 public void p(){
 System.out.println("p in C");
 }//end p()
 //---------------------------------//

 public void q(){
 System.out.println("q in C");
 }//end q();
 //---------------------------------//
}//end class B

In this upgraded version, the methods named

p

 and
	

q

 each display a message indicating that they have been executed. Again, this will be useful later to let us know exactly which version of the methods named p and q get executed when we exercise the objects.

The driver class

Listing 5

 shows the beginning of the class named

Poly06

. The

main

 method in this class instantiates objects of the classes named

B

 and

C

, and exercises them to illustrate what can, and what cannot be done with them.

Example 5.
 public class Poly06{
 public static void main(
 String[] args){
 I1 var1 = new B();
 var1.p();//OK

A new data type

As explained in the previous module, when you define a new interface, you create a new data type.

You can store the reference to any object instantiated from any class that implements the interface in a reference variable of that type.

A new object of the class B

The code shown in

Listing 5

 instantiates a new object of the class

B

.

Important: stored as type I1

It is important to note that the code in

Listing 5

 stores the object's reference in a reference variable of the interface type

I1

(not as the class type

B

)

.

Call an interface method

Following this, the code in

Listing 5

 successfully calls the method named

p

 on the reference, producing the following output on the computer screen:

 p in B

Why is this allowed?

This is allowable because the method named

p

 is declared in the interface named

I1

.

Which version of the method was executed?

It is also important to note,

(by observing the output)

, that the version of the method defined in the class named

B

(and not the version defined in the class named

C

)

 was actually executed.

Attempt unsuccessfully to call q

Next, the code in

Listing 6

 attempts, unsuccessfully, to call the method named

q

 on the same reference variable of type

I1

.

Example 6.
 var1.q();//won't compile

Why did it fail?

Even though the class named

B

, from which the object was instantiated, defines the method named

q

, that method is neither declared nor inherited into the interface named

I1

.

Therefore, a reference of type

I1

 cannot be used to call the method named

q

.

The solution is a type conversion

Listing 7

 shows the solution to the problem presented by

Listing 6

.

Example 7.
 ((I2)var1).q();//OK

As in the case of polymorphism involving class inheritance, the solution is to change the type of the reference to a type that either declares or inherits the method named
	

q

.

In this case, this takes the form of using a cast operator to convert the type of the reference from type

I1

, to type

I2

, and then calling the method named

q

 on that reference of a new type.

This produces the following output:

 q in B

Using type I2 directly

Listing 8

instantiates a new object of the class

B

 and stores the object's reference in a reference variable of the interface type

I2

.

Example 8.
 I2 var2 = new B();
 var2.p();//OK
 var2.q();//OK

Call both methods successfully

Then the code successfully calls both the methods

p

 and

q

 on that reference, producing the following output:

 p in B
q in B

Why does this work?

This works because:

 	
The interface named

I2

 declares the method named
	

q

	
The interface named

I2

 inherits the declaration of the method named
	

p

	
The class named

B

 implements the interface named
	

I2

 and provides concrete definitions of both the methods
	

p

 and

q

.

Attempt, unsuccessfully, to call x on var2

Following this, the code in

Listing 9

 attempts, unsuccessfully, to call the method named

x

 on the reference variable named

var2

 of type

I2

. This code produces a compiler error.

Example 9.
 String var3 = var2.x();

The object of class B has a method named x

At this point, the reference variable named

var2

 contains a reference to an object instantiated from the class named

B

.

Furthermore, the class named

B

 inherits the method named

x

 from the class named

A

.

Necessary, but not sufficient

However, the fact that the object contains the method is not sufficient to make it executable in this case.

Same song, different verse

The interface named

I2

 neither declares nor inherits the method named

x

.

Therefore, the method named

x

 cannot be called using the reference stored in the variable named

var2

 unless the reference is converted either to type

A

(where the method named

x

 is defined)

 or type

B

(where the method named x is inherited)

.

Do the type conversion

The required type conversion is accomplished in

Listing 10

 where the reference is temporarily converted to type

A

 using a cast operator.

(It would also work to cast it to type

B

.)

Example 10.
 String var3 = ((A)var2).x();//OK
 System.out.println(var3);

The String produced by the first statement in

Listing 10

 is passed to the
	

println

 method causing the following text to be displayed on the computer screen:

 x in A

Get ready for a surprise

If you have now caught onto the general scheme of things, the next thing that I am going to show you may result in a little surprise.

Successfully call the toString method on var2

The first statement in

Listing 11

 successfully calls the

toString

 method on the object of the class

B

 whose reference is stored as type

I2

.

Example 11.
 var3 = var2.toString();//OK
 System.out.println(var3);

How can this work?

How can this work when the interface named

I2

 neither declares nor inherits a method named

toString

.

A subtle difference in behavior

I am unable to point you to any Sun documentation to verify the following.

(I also admit that I haven't spent a large amount of time searching for such documentation).

With respect to the eleven methods declared in the

Object

class (listed in an earlier module)

, a reference of an interface type acts like it is also of type

Object

.

And the end result is ...

This allows the methods declared in the

Object

 class to be called on references held as interface types without a requirement to cast the references to type

Object

.

(Later, I will show you that the reverse is not true.)

The output

Therefore, the two statements shown in

Listing 11

 cause the following to be displayed on the computer screen:

 toString in A

Polymorphism applies

Note that the object whose reference is held in

var2

 was instantiated from the class named

B

, which extends the class named

A

.

Due to polymorphism, the

toString

 method that was actually executed in

Listing 11

 was the overridden version defined in class

A

, and not the default version defined in the

Object

 class. The overridden version in class

A

 was inherited into class

B

.

The reverse is not true

While a reference of an interface type also acts like type

Object

, a reference of type

Object

 does not act like an interface type.

Store a reference as type Object

The code in

Listing 12

 instantiates a new object of type

B

 and stores it in a reference of type

Object

.

Attempt unsuccessfully to call p

Then it attempts, unsuccessfully, to call the method named

p

 on the reference.

Example 12.
 Object var4 = new B();
 var4.p();//won't compile

Same song, an even different verse

The code in

Listing 12

 won't compile, because the

Object

 class neither defines nor inherits the method named

p

.

In order to call the method named

p

 on the reference of type

Object

, the type of the reference must be changed to either:

 	
The class in which the method is defined

	
An interface that declares the method, which is implemented by the class in which the method is defined

	
A couple of other possibilities involving subclasses or sub-interfaces
	

Convert reference to type I1

The code in

Listing 13

 uses a cast operator to convert the reference from type

Object

 to type

I1

, and calls the method named

p

 on the converted reference.

Example 13.
 ((I1)var4).p();//OK

The output

The code in

Listing 13

 compiles and executes successfully, producing the following text on the computer screen:

 p in B

A walk in the park

If you understand all of the above, understanding the code in

Listing 14

 should be like a walk in the park on a sunny day.

Example 14.
 var2 = new C();
 var2.p();//OK
 var2.q();//OK

Class C implements I2

Recall that the class named

C

 also implements the interface named

I2

.

The code in

Listing 14

 instantiates a new object of the class named

C

, and stores the object's reference in the existing reference variable named

var2

 of type

I2

.

Then it calls the methods named

p

 and

q

 on that reference, causing the following text to be displayed on the computer screen:

 p in C
q in C

Which methods were executed?

This confirms that the methods that were actually executed were the versions defined in the class named

C

 (

and not the versions defined in the class named

B

)

.

Same method name, different behavior

It is important to note that the behavior of the methods named

p

 and

q

, as defined in the class named

C

, is different from the behavior of the methods having the same signatures defined in the class named

B

. Therein lies much of the power of the Java interface.

The power of the Java interface

Using interface types, it is possible to collect many objects instantiated from many different classes

(provided all the classes implement a common interface)

, and store each of the references in some kind of collection as the interface type.

Appropriate behavior

Then it is possible to call any of the interface methods on any of the objects whose references are stored in the collection.

To use the current jargon, when a given interface method is called on a given reference, the behavior that results will be

appropriate

 to the class from which that particular object was instantiated.

This is runtime polymorphism based on interfaces and overridden methods.

5.

Summary

If you don't understand interfaces ...

If you don't understand interfaces, you don't understand Java, and it is highly unlikely that you will be successful as a Java programmer.

Interfaces are indispensable in Java

Beyond writing "Hello World" programs, there is little if anything that can be accomplished using Java without understanding and using interfaces.

What can you do with interfaces?

The sample program that I discussed in this module has illustrated

(in a very basic form)

 some of the things that you can do with interfaces, along with some of the things that you cannot do with interfaces.

In order to write programs that do something worthwhile, you will need to extend the concepts illustrated by this sample program into real-world requirements.

6.

What's next?

Java supports the use of

static

 member variables and

static

 methods in class definitions.

While

static

 members can be useful in some situations, the existence of

static

 members tends to complicate the overall object-oriented structure of Java.

Furthermore, the overuse of

static

 members can lead to problems similar to those experienced in languages like C and C++ that support global variables and global functions.

The use of static members will be discussed in the next module.

7.

Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

 	
Module name: Java OOP: Polymorphism and Interfaces, Part 2

	
File: Java1618.htm

	
Published: April 10, 2002

	
Revised: July 27, 2012

Disclaimers:

Financial

: Although the Connexions
site makes it possible for you to download a PDF file for this
module at no charge, and also makes it possible for you to
purchase a pre-printed version of the PDF file, you should be
aware that some of the HTML elements in this module may not translate well into
PDF.

I also want you to know that, I receive no financial compensation from the Connexions website even if you purchase
	the PDF version of the module.

In the past, unknown individuals have misappropriated copies
				of my modules from cnx.org, converted them to Kindle books, and
				placed them for sale on Amazon.com showing me as the author. I
				receive no compensation for those sales and don't know who does
				receive compensation. If you purchase such a book, please be
				aware that it is a bootleg copy of a module that is freely
				available on cnx.org.

Affiliation

: I am a professor of Computer Information
	Technology at Austin Community College in Austin, TX.
	

8.

Complete program listing

A complete listing of the sample program is shown in

Listing 15

 below.

Example 15.
 /*File Poly06.java
Copyright 2002, R.G.Baldwin

This program illustrates polymorphic
behavior using interfaces in addition
to class inheritance.

The program output is:
p in B
q in B

p in B
q in B
x in A
toString in A

p in B

p in C
q in C
**************************************/

interface I1{
 public void p();
}//end interface I1
//===================================//

interface I2 extends I1{
 public void q();
}//end interface I2
//===================================//

class A extends Object{

 public String toString(){
 return "toString in A";
 }//end toString()
 //---------------------------------//

 public String x(){
 return "x in A";
 }//end x()
 //---------------------------------//
}//end class A
//===================================//

class B extends A implements I2{
 public void p(){
 System.out.println("p in B");
 }//end p()
 //---------------------------------//

 public void q(){
 System.out.println("q in B");
 }//end q();
 //---------------------------------//
}//end class B
//===================================//

class C extends Object implements I2{
 public void p(){
 System.out.println("p in C");
 }//end p()
 //---------------------------------//

 public void q(){
 System.out.println("q in C");
 }//end q();
 //---------------------------------//
}//end class B
//===================================//

public class Poly06{
 public static void main(
 String[] args){
 I1 var1 = new B();
 var1.p();//OK
 //var1.q();//won't compile
 ((I2)var1).q();//OK
 System.out.println("");//blank line

 I2 var2 = new B();
 var2.p();//OK
 var2.q();//OK
 //Following won't compile
 //String var3 = var2.x();
 String var3 = ((A)var2).x();//OK
 System.out.println(var3);
 var3 = var2.toString();//OK
 System.out.println(var3);
 System.out.println("");//blank line

 Object var4 = new B();
 //var4.p();//won't compile
 ((I1)var4).p();//OK
 System.out.println("");//blank line

 var2 = new C();
 var2.p();//OK
 var2.q();//OK
 System.out.println("");//blank line
 }//end main
}//end class Poly06

-end-

content/cover.png
Java OOP:
Polymorphism
and Interfaces,
Part 2

