

 [image: Java1622: Array Objects, Part 1]

 Java1622: Array Objects, Part 1
By: Richard Baldwin
Online: <http://cnx.org/content/m44198/1.2/>
This module is copyrighted by Richard Baldwin.
It is licensed under the Creative Commons Attribution License: http://creativecommons.org/licenses/by/3.0/
Module revised: 2012/12/12

Java1622: Array Objects, Part 1
By: Richard Baldwin
Online: <http://cnx.org/content/m44198/1.2/>
This module is copyrighted by Richard Baldwin.
It is licensed under the Creative Commons Attribution License: http://creativecommons.org/licenses/by/3.0/
Module revised: 2012/12/12

Java1622: Array Objects, Part 1

1.
Table of Contents

 	

Preface

	

 	

Viewing tip

 	

Listings

		

	

	

Preview

	

Discussion and sample code

	

Summary

	

What's next?

	

Miscellaneous

	

Complete program listing

2.

Preface

This module is one of a series of modules designed to teach you about Object-Oriented Programming (OOP) using Java.

Viewing tip

I recommend that you open another copy of this document in a separate
browser window and use the following links to easily find and view the listings while you are reading about them.

Listings

 	

Listing 1

. Sample variable declarations for array objects.

	

Listing 2

. The special case of type Object.

	

Listing 3

. Creating array objects.

	

Listing 4

. The beginning of the class named Array05.

	

Listing 5

. A new ordinary object of class Array05.

	

Listing 6

. Populate the second element.

	

Listing 7

. Print some data.

	

Listing 8

. Produce some more output.

	

Listing 9

. Complete program listing.

3.

Preview

This module explains how array objects fit into the grand scheme of things
in Object-Oriented Programming

(OOP)

 using Java.

A different syntax is required to create array objects than the syntax
normally used to create ordinary objects.

Array objects are accessed via references. Any of the methods of the

Object

 class can be called on a reference to an array object.

Array objects encapsulate a group of variables. The variables don't have
individual names. They are accessed using positive integer index values. The
integer indices of a Java array object always extend from

0

 to

(n-1)

where

n

 is the

length

 of the array encapsulated in the object.

All array objects in Java encapsulate one-dimensional arrays. The component
type of an array may itself be an array type. This makes it possible to create
array objects whose individual components refer to other array objects. This is
the mechanism for creating

multi-dimensional

 or

ragged

 arrays in
Java.

4.

Discussion and sample code

Three kinds of objects

In an earlier module, I told you that from a conceptual viewpoint, there are
at least three kinds of objects involved in a Java program:

 	
Ordinary objects

	
Class objects

	
Array objects

Ordinary objects

Most of the discussion up to that point in the collection dealt with what I
have referred to in the above list as

ordinary objects

.

These are the objects that you instantiate in you code by applying the

new

operator to a constructor for a class in order to create a new instance

(object)

 of that class.

Class objects

In that module, I emphasized that my discussion of

Class

 objects was
conceptual in nature and did not necessarily represent an actual implementation.
I went on to discuss the class named

Class

, and discussed how the use of
that class fits into the grand scheme of OOP in Java. I explained how the
existence of

class variables

 and

class methods

 tends to complicate
the rather simple OOP structure consisting only of ordinary objects.

Array objects

I haven't discussed

array objects

 up to this point in this collection.
That is the purpose of this module.

Also tends to complicate

The existence of array objects also tends to complicate the OOP structure of
a Java program consisting only of ordinary objects. Even if you don't consider
array objects to be a different kind of object, you must at least consider them
to be a

special

 kind of object. A completely different syntax is required
to create array objects than the syntax normally used to instantiate ordinary
objects.

References to array objects

Arrays are objects in Java

(at least, arrays are always encapsulated in
objects).

 Array objects are dynamically created. Like ordinary objects,
array objects are accessed via references. The reference to an array object may
be assigned to a reference variable whose type is specified as:

 TypeName[]

For example,

Listing 1

 shows some unrelated
declarations for variables that are capable of storing references to array
objects.

Example 1.
 int[] x1;

Button[] x2;

Object[] x3;

Note the empty square brackets that are required in the variable
	declarations in

Listing 1

.

The special case of type Object

In addition, a reference to an array object may be assigned to a reference
variable of type

Object

 as shown in

Listing 2

.

Example 2.
 Object x4;

Note that there are

no square brackets

 in the statement in Listing
	2.

What does this mean?

This means that like ordinary objects, a reference to an array object can be
treated as type

Object

(with no square brackets).

This further means that any of the methods defined in the

Object

 class

(such as the

toString

 and

getClass

 methods)

can be called
on a reference to an array object.

The String representation of an array object's reference

For example, when the

toString

 method is called on a reference to an
array object containing data of type

int

, the resulting string will be
similar to the following:

 [I@73d6a5

Pretty ugly, huh?

You may recognize this as being similar to the default

String

 returned
by calling the

toString

 method on an ordinary object with the name of the
class for the ordinary object being replaced by

[I

.

For example, the

String

returned by calling the

toString

 method
on an object of the class named

Array04

,

(with no overridden toString
method),

looks something like the following.

 Array04@73d6a5

(Note that the hexadecimal numeric values following the @ in both of the
above examples will change from one case to the next.)

Calling the getClass method

Similarly, calling the

getClass

 method on references to arrays
containing data of the types

Array04

,

Button

, and

int

,
respectively, and then calling the

toString

 method on the

Class

objects returned by the

getClass

 method, produces the following:

 class [LArray04;
class [Ljava.awt.Button;
class [I

Complicating the OOP structure

I made the following statement in an earlier paragraph:

"The existence of array objects also tends to complicate the OOP structure
of a Java program consisting only of ordinary objects."

Array object is not a subclass of class Object

An array object can be treated as type

Object

 for purposes of calling
the methods of the

Object

 class on the reference to the array object.
However, it would probably be misleading to say that an array object is
instantiated from a subclass of the

Object

 class.

The new operator and the constructor name

Ordinary objects are created by applying the

new

 operator to the
constructor for a class, where the name of the constructor is always the same as
the name of the class. That is not the case with array objects. Array objects
are created by applying the

new

 operator to the name of the type of data
to be encapsulated in the array object.

Passing parameters versus square-bracket notation

In addition, whereas the instantiation of ordinary objects involves
parameters passed in parentheses, a square-bracket notation is used instead of
parentheses to create an array object. The value in the square brackets
specifies the

length

 of the array.

Creating an array object

Array objects

(with default initialization values)

 are created by
applying the

new

 operator to the name of the data type to be stored in
the array, using a square-bracket notation. An example is shown by the
right-hand portion of the first statement in

Listing 3

.

Example 3.
 int[] x1 = new int[5];

int[] x2 = {1,2,3,4,5};

A five-element array object

The first statement in

Listing 3

 creates an array
object capable of storing five values of type

int

. The statement also assigns the array object's
reference to the newly-declared reference variable named

x1

.

Default initial values

Each element in the array is initialized to the default value zero.

(All array elements created in this manner receive a default initial
value. Numeric primitive types receive an initial value of zero. Elements of
type

boolean

 receive an initial value of

false

. Elements whose
type is the name of a class or the name of an interface receive an initial value
of

null

.)

Explicit initialization

The second statement in

Listing 3

 also creates an
array object capable of storing five values of type

int

, but in this case, the values in the
elements are explicitly initialized to the values shown.

(Note that the

new

 operator is not used in the second statement in
Listing 3. This is also a significant departure from the syntax used to
instantiate ordinary objects.)

This array object's reference is assigned to the reference variable named

x2

.

Note the empty square brackets in the variable declarations

The syntax of the type specification for the reference variable in each
statement in

Listing 3

is different from the syntax used in the type specification for either a
primitive variable or an ordinary class type reference variable

(note the
square brackets on the left in Listing 3)

. In

Listing 3

,
the type specifications indicate that each variable is capable of holding a
reference to an array object.

The size of the array

Furthermore, the empty square brackets

(in the declaration of the
reference variable)

 indicate that the reference variable doesn't know

(and doesn't care)

 about the size of the array to which it may refer. Each
of the reference variables declared in

Listing 3

 can
refer to a one-dimensional array object of any size. Also, each of the reference
variables can refer to different array objects at different points in time
during the execution of the program.

The Array class

As an aside, let me mention that there is a class named

				Array

, which provides

static

 methods to
				dynamically create and access Java arrays. The use of the
				methods of this class makes it possible to handle arrays with a
				programming style similar to the programming style typically
				used with ordinary objects. However, the use of the methods of
				the

Array

 class tends to require more programming effort
				than the square-bracket notation discussed in this module. I
				will discuss a sample program that illustrates the methods of
				the

Array

 class in a future module.

Encapsulating a group of variables

As is the case with other languages that support arrays, array objects in
Java encapsulate a group of variables.

Zero or more variables may be encapsulated in an array object. If the number
is zero, the array object is said to be empty.

(An example of an empty array object is the

String[]

array passed to the

main

 method in a Java application when the user doesn't enter
any arguments at the command line.)

No individual names

Also, as with other languages that support arrays, the variables encapsulated
in an array object don't have individual names. Rather, they are referenced
using positive integer index values.

(Typically, in Java, the index is placed in square brackets, which are
applied to the name of the reference variable holding a reference to the array
object.)

Elements or components?

It is common in the literature to refer to the variables that make up an
array as its

elements

. However, the Java specification refers to them as

components.

The specification ascribes a different meaning to the word
element, as shown in the following quotation from the specification:

"The value of an array component of type

float

 is always
an element of the

float

 value set ...; similarly, the value of
an array component of type

double

 is always an element of the

double

 value set."

Another quotation from Sun

(shown later in this module)

 provides a somewhat
clearer distinction between the words

component

 and

element

.

(However, from force of habit, I will probability use component and
element interchangeably in this module.)

The length of an array

If an array has

n

 components, the

length

 of the array
is

n

.
The components of the array are referenced using integer indices from 0 to (n -
1), inclusive.

Another quotation from Sun

Here is another quotation from the Java specification that explains the type
specifications for the variable declarations in

Listing 1

and

Listing 3

.

"All the components of an array have the same type, called the component
type of the array. If the component type of an array is T, then the type of the
array itself is written T[]."

Components may be of an array type

As of the time that this object was originally written, all array objects in
Java encapsulate one-dimensional arrays

(I have read that this may change in
the future).

The component type of an array may itself be an array type. This makes it
possible to create array objects whose individual components refer to other
array objects.

Multi-dimensional or ragged arrays

One way to think of this is to think of the second level of array objects as
being sub-arrays of the original array object. This construct can be used to
create multi-dimensional array structures.

(The geometry of such multi-dimensional array structures is not
constrained to be rectangles, cubes, etc., as is the requirement in many other
languages. Some authors may refer to this as ragged arrays.)

Tree structures

This process of having the components of an array contain references to
sub-arrays can be continued indefinitely

(well, maybe not indefinitely, but
further than I care to contemplate).

(This can be thought of as a tree structure where each array object
containing references to other array objects is a node in the tree.)

The leaves of the tree

Eventually, the components

(the leaves of the tree structure)

 must
refer to a component type that is not an array type. According to Sun:

"... this is called the element type of the original array, and the

components

 at this level of the data structure are called the

elements

of the original array."

Component versus element

Hopefully, the above quotation provides a somewhat clearer distinction
between the use of the words

component

 and

element

 than was presented earlier.

Generic references

The reference to any array object can also be assigned to reference variables
of the types

Object

,

Cloneable

, or

Serializable

.

(

Object

 is the class at the top of the inheritance hierarchy.

Cloneable

 and

Serializable

 are interfaces, which are implemented by
all array objects. Thus, a reference to an array object can be treated as any of
these three types.)

Generic array objects

Therefore, if the element type of an array object is one of these types, the
elements in the array can refer to:

 	
Other array objects

	
Ordinary objects

	
A mixture of the two

This is illustrated in the sample program named

Array05

 shown in

Listing 9

 near the end of the module.

Will explain in fragments

I will explain this program in fragments.

Listing 4

shows the beginning of the controlling class and the beginning of the

main

 method
for the program named

Array05

..

Example 4.

public class Array05{
 public static void main(String[] args){
 int[] v1 = {1,2,3,4,5};
 Object[] v2 = new Object[2];

Listing 4

	creates two array objects.

An array of type int

The first array object is a five-element array of element type

int

,
with the element values initialized as shown by the values within the curly
brackets. The reference to this array object is assigned to the reference
variable named

v1

.

An array of element type Object

The second array object is a two-element array of element type

Object

,
with each of the element values initialized to their default value of

null

.
The reference to the array object is assigned to the reference variable named

v2

.

(Note that unlike the previous discussion of

Object

, the
declaration of the reference variable in this case does include empty square
brackets. I will have more to say about this later.)

A new object of this class

Listing 5

 creates a new

ordinary object

 of
class

Array05

. The code assigns the object's reference to the first
element in the array object of element type

Object

, referred to by the
reference variable named

v2

.

Example 5.

 v2[0] = new Array05();

This is allowable because the reference to an object of any class can be
	assigned to a reference variable of type

Object

.

(The array object referred to by

v2

 contains two elements, each of
which is a reference variable of type

Object

.)

Populate the second element

The code in

Listing 6

 assigns the reference to the existing array object of
the element type

int

 to the second element in the array object of element
type

Object

.

Example 6.

 v2[1] = v1;

This is allowable because a reference to any array object can be assigned
	to a reference variable of type

Object

.

Array contains two references

At this point, the array object of element type

Object

 contains two
references.

(Each of the elements in an array of the declared type

Object[]

 is
a reference of type

Object

.)

The first element refers to an ordinary object of the class

Array05

.

The second element refers to an array object of type

int

, having five
elements, populated with the integer values of 1 through 5 inclusive.

(Note that this is not a multi-dimensional array in the traditional sense.
I will discuss the Java approach to such multi-dimensional arrays in the next
module. This is simply a generic array of element type

Object

, one
element of which happens to contain a reference to an array object of type

int

.)

Print some data

The code in

 Listing 7

 passes each of the references
to the

println

method of the

PrintStream

 class.

Example 7.

 System.out.println(v2[0]);
 System.out.println(v2[1]);

The

println

 method causes the

toString

 method to be called
	on each reference. The

String

 returned by the

toString

 method
	is displayed on the computer screen in each case.

This is allowable because any method defined in the

Object

 class

(including the

toString

 method)

 can be called on any reference stored
in a reference variable of type

Object

.

This is true regardless of whether that reference is a reference to an
ordinary object or a reference to an array object.

The output

 Listing 7

 causes the following two lines of text to
be displayed:

 Array05@73d6a5
[I@111f71

Pretty ugly, huh?

In both cases, this is the value of the

String

 returned by the default
version of the

toString

 method defined in the

Object

 class. Here
is what Sun has to say about that default behavior:

"Returns a string representation of the object. In general, the

toString

 method returns a string that "textually represents" this object.
The result should be a concise but informative representation that is easy for a
person to read. It is recommended that all subclasses override this method.

The

toString

 method for class

Object

 returns a string
consisting of the name of the class of which the object is an instance, the
at-sign character `@', and the unsigned hexadecimal representation of the hash
code of the object."

Doesn't address array objects

Obviously, this description of behavior doesn't address the case where the
object is an array object, unless the characters

[I

 are considered to be
the name of a class.

(I will have a little more to say about this later.)

Produce some more output

Finally,

Listing 8

 shows the last statement in this
simple program.

Example 8.

 System.out.println(((int[])v2[1])[4]);
 }//end main
}//end class Array05

What does this mean?

As you can see, the syntax of this statement is pretty ugly.

Values are accessed from an array object by following the array's reference
with a pair of square brackets containing an integer index value as follows:

 v2[1]

Get the value at index 1 as type Object

This code begins by accessing the component at index value 1 of the array
object referred to by the reference variable named

v2

.

The value retrieved is a reference, and is retrieved as type

Object

,

(because the variable named

v2

 was declared to be of type

Object[]

).

A cast is required

A cast is used to convert from type

Object[]

to type

int[]

 using
the following code:

 (int[])

This produces a reference to an
array object capable of containing values of type

int

.

Apply index to the int array

After the type of the reference has been converted, the accessor

[4]

is applied to the reference. This causes the

int

 value stored in the
array object of type

int

(at index value 4)

 to be returned.

(If you refer back to

Listing 4

, you will see that the integer value 5 was
stored in the element at index value 4 of this array object.)

You should try to remember this syntax and compare it with the syntax used in
the Java approach to traditional multi-dimensional arrays, which I will discuss
in the next module.

The output

Thus, the code in

Listing 8

 causes the number 5 to be displayed on the
computer screen.

Let's recap

To recap, the program named

Array05

 creates a two-element array object
capable of storing references of type

Object

.

Object is generic

Because

Object

 is a completely generic type, each of
the elements in the array is capable of storing a reference to any ordinary
object, or storing a reference to any array object.

Store reference to ordinary object in generic array

The first element in the array is populated with a reference to an ordinary
object instantiated from the class named

Array05

.

(Important: The actual object does not occupy the array element. Rather,
the actual object exists someplace else in memory, and a reference to the object
occupies the array element.)

Store a reference to an array object in the generic array

The second element in the array of element type

Object

 is populated
with a reference to another array object capable of containing elements of type

int

.

As above, the actual array object of type

int

 does not occupy the
second element. Rather, that array object exists someplace else in memory, and a
reference to the array object occupies the second element in the array of
element type

Object

.

Display some data

After the array object of element type

Object

 is created and
populated, three print statements are executed to display information about the
array object and its contents

(those print statements are shown in

Listing 7

and

Listing 8

).

The print statements produce the following output on the computer screen:

 Array05@73d6a5
[I@111f71
5

Default textual representation of ordinary object

The first line of output is the default textual representation of the
ordinary object, achieved by calling the default

toString

 method on the
reference to the ordinary object.

Default textual representation of array object

The second line of output is the textual representation of the array object
of type

int[]

, achieved by calling the default

toString

 method on
the reference to the array object.

Primitive value stored in array object

The third line of text is the value stored in element index 4 of the

int[]

array object whose reference is stored in element index 1 of the array object of
element type

Object

.

Primitive versus non-primitive array element contents

References to objects are stored in the elements of non-primitive array
objects. The objects themselves exist somewhere else in memory.

Actual primitive values are stored in the elements of
a primitive array object.

Thus, the elements of an array object contain actual primitive
values, null references, or actual references to ordinary or array objects,
depending on the type of the elements of the array object.

5.

Summary

This module begins the discussion of array objects in Java.

The existence of array objects tends to complicate the OOP structure of a
Java program otherwise consisting only of ordinary objects.

A completely different syntax is required to create array objects than the
syntax normally used to instantiate ordinary objects. Ordinary objects are
normally instantiated by applying the

new

 operator to the constructor for
the target class passing parameters between a pair of matching parentheses.

Array objects

(with default initialization)

 are created using the

new

 operator, the type of data to be encapsulated in the array, and a
square-bracket notation to specify the

length

 of the array encapsulated
in the object.

Array objects with explicit initialization are created using a
comma-separated list of expressions enclosed in curly brackets.

Arrays in Java are objects, which are dynamically created and allocated to
dynamic memory.

Like ordinary objects, array objects are accessed via references. The type of
such a reference is considered to be

TypeName[]

(note the empty square
brackets in the type specification).

A reference to an array object can also be assigned to a reference variable
of type

Object

(note the absence of square brackets).

 Thus, any of
the methods of the

Object

 class can be called on a reference to an array
object.

As is the case with other languages that support arrays, array objects in
Java encapsulate a group of zero or more variables. The variables encapsulated
in an array object don't have individual names. Rather, they are accessed using
positive integer index values.

The integer indices of a Java array object always extend from

0

 to

(n-1)

 where

n

 is the

length

 of the array object.

As of the time of this writing, all array objects in Java encapsulate
one-dimensional arrays. However, the component type of an array may itself be an
array type. This makes it possible to create array objects whose individual
components refer to other array objects. This is the mechanism for creating

multi-dimensional

 or

ragged

 arrays in Java.

The reference to any array object can be assigned to reference variables of
the types

Object

,

Cloneable

, or

Serializable

. If the
element type of an array object is one of these types, the elements in the array
can refer to:

 	
Other array objects

	
Ordinary objects

	
A mixture of the two

6.

What's next?

This module has barely scratched the surface in explaining how array objects
fit into the grand scheme of things in OOP using Java. In the next module, I
will continue the discussion, showing you some of the

(often complex)

aspects of using Java array objects to emulate traditional

 multi-dimensional

arrays. I will also show you how to create

ragged

 arrays in Java.

7.

Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

 	
Module name: Java OOP: Array Objects, Part 1

	
File: Java1622.htm

	
Published: May 15, 2002

	
Revised: July 28, 2012

Disclaimers:

Financial

: Although the Connexions
site makes it possible for you to download a PDF file for this
module at no charge, and also makes it possible for you to
purchase a pre-printed version of the PDF file, you should be
aware that some of the HTML elements in this module may not translate well into
PDF.

I also want you to know that, I receive no financial compensation from the Connexions website even if you purchase
	the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle books, and
				placed them for sale on Amazon.com showing me as the author. I
				neither receive compensation for those sales nor do I know who does
				receive compensation. If you purchase such a book, please be
				aware that it is a copy of a module that is freely
				available on cnx.org and that it was made and published without
				my prior knowledge.

Affiliation

: I am a professor of Computer Information
	Technology at Austin Community College in Austin, TX.
	

8.

Complete program listing

A complete listing of the program is shown in

Listing 9

below.

Example 9.

/*File Array05.java
Copyright 2002, R.G.Baldwin

This program illustrates storage of
references to ordinary objects and
references to array objects in the
same array object of type Object.

Program output is:

Array05@73d6a5
[I@111f71
5
**************************************/

public class Array05{
 public static void main(
 String[] args){

 int[] v1 = {1,2,3,4,5};
 Object[] v2 = new Object[2];
 v2[0] = new Array05();
 v2[1] = v1;

 System.out.println(v2[0]);
 System.out.println(v2[1]);
 System.out.println(
 ((int[])v2[1])[4]);
 }//end main
}//end class Array05

-end-

content/cover.png
Javal622: Array
Objects, Part 1

