
OpenStax-CNX module: m44200 1

Java OOP: Array Objects, Part 3
∗

R.G. (Dick) Baldwin

This work is produced by OpenStax-CNX and licensed under the

Creative Commons Attribution License 3.0†

Abstract

Baldwin discusses various details regarding array objects in Java, including: members of an array

object, interfaces implemented by array objects, Class objects and array objects, and the classes named

Array and Arrays.

1 Table of Contents

• Preface (p. 1)

· Viewing tip (p. 1)

* Listings (p. 1)

• Preview (p. 2)
• Discussion and sample code (p. 2)
• Summary (p. 9)
• What's next? (p. 10)
• Miscellaneous (p. 10)
• Complete program listing (p. 11)

2 Preface

This module is one of a series of modules designed to teach you about Object-Oriented Programming (OOP)
using Java.

2.1 Viewing tip

I recommend that you open another copy of this document in a separate browser window and use the
following links to easily �nd and view the listings while you are reading about them.

2.1.1 Listings

• Listing 1 (p. 4) . Using the newInstance method.
• Listing 2 (p. 5) . Populate the array object.
• Listing 3 (p. 5) . Display the data.
• Listing 4 (p. 6) . An array object of type int.

∗Version 1.2: Aug 8, 2012 1:11 am -0500
†http://creativecommons.org/licenses/by/3.0/

http://cnx.org/content/m44200/1.2/

OpenStax-CNX module: m44200 2

• Listing 5 (p. 6) . The two-dimensional array object tree.
• Listing 6 (p. 7) . Populate the leaf elements.
• Listing 7 (p. 7) . Display the data.
• Listing 8 (p. 8) . Create, populate, and display an array object.
• Listing 9 (p. 8) . Sort and display the data.
• Listing 10 (p. 9) . Search for an existing string.
• Listing 11 (p. 9) . Search for a non-existing string.
• Listing 12 (p. 11) . Complete program listing.

3 Preview

This module discusses various details regarding the use of array objects in Java, including:

• The members of an array object
• The interfaces implemented by array objects
• Class objects and array objects
• The classes named Array and Arrays

4 Discussion and sample code

Members of an array object
An array object has the following members (in addition to the data stored in the object):

• A public �nal variable named length , which contains the number of components of the array (length
may be positive or zero)

• A public method named clone . This method overrides the method of the same name in Object
class.

• Default versions of all the methods inherited from the class named Object , (other than clone ,
which is overridden as described above).

Implements Cloneable and Serializable
Also, every array object implements the Cloneable and Serializable interfaces. (Note that neither

of these interfaces declares any methods.)
What is the Cloneable interface?
Here is what Sun has to say about the Cloneable interface:
"A class implements the Cloneable interface to indicate to the Object.clone() method that it is

legal for that method to make a �eld-for-�eld copy of instances of that class. Attempts to clone instances
that do not implement the Cloneable interface result in the exception CloneNotSupportedException
being thrown."

Thus, the fact than an array object implements the Cloneable interface makes it possible to clone
array objects.

A cloned array is shallow
While it is possible to clone arrays, care must be exercised when cloning multidimensional arrays. That

is because a clone of a multidimensional array is shallow.
What does shallow mean?
Shallow means that the cloning process creates only a single new array.
Subarrays are shared between the original array and the clone.
(Although I'm not certain, I suspect that this may also be the case for cloning array objects containing

references to ordinary objects. I will leave that determination as an exercise for the student. In any event,
be careful if you clone array objects.) Serialization

http://cnx.org/content/m44200/1.2/

OpenStax-CNX module: m44200 3

Serialization of an object is the process of decomposing the object into a stream of bytes, which can later
be recomposed into a copy of the object. Here is what Sun has to say about the Serializable interface:

"Serializability of a class is enabled by the class implementing the java.io.Serializable interface.
Classes that do not implement this interface will not have any of their state serialized or deserialized.

All subtypes of a serializable class are themselves serializable.
The serialization interface has no methods or �elds and serves only to identify the semantics of being

serializable."
Even though this quotation from Sun doesn't address array objects, because array objects implement the

Serializable interface, they can be serialized and later reconstructed.
Class objects representing array objects
An object of the class named Class can be obtained (by calling the getClass method of the Object

class) to represent the class from which an ordinary object was instantiated.
The Class object is able to answer certain questions about the class that it represents (such as the

name of the superclass), and has other uses as well.
(One of the other uses is to specify the type as a parameter to the methods of the Array class, which

I will illustrate later in this module.)
Every array also has an associated Class object.
That Class object is shared with all other arrays with the same component type.
The superclass of an array type is Object . (Think about this!)
An array of characters is not a string
For the bene�t of the C/C++ programmers in the audience, an array of char is not a String .
(In Java, a string is an object of the String class or the StringBu�er class).
Not terminated by null
Also, neither a String object nor an array of type char is terminated by '\u0000' (the NUL character)

.
(This information is provided for the bene�t of C programmers who are accustomed to working with

so-called null-terminated strings. If you're not a C programmer, don't worry about this.)
A String object in Java is immutable
Once initialized, the contents of a Java String object never change.
On the other hand, an array of type char has mutable elements. The String class provides a method

named toCharArray , which returns an array of characters containing the same character sequence as a
String .

StringBu�er objects
The class named StringBu�er also provides a variety of methods that work with arrays of characters.

The contents of a StringBu�er object are mutable.
The Array and Arrays classes
The classes named Array and Arrays provide methods that you can use to work with array objects.
The Array class provides static methods to dynamically create and access Java arrays.
The Arrays class contains various methods for manipulating arrays (such as sorting and searching).

It also contains a static factory method that allows arrays to be viewed as lists.
A sample program named Array08
The sample program named Array08 (shown in Listing 12 (p. 11) near the end of the module)

illustrates the use of some of these methods.
Will discuss in fragments
As usual, I will discuss this program in fragments. Essentially all of the interesting code is in the method

named main , so I will begin my discussion there. The �rst few fragments will illustrate the creation,
population, and display of a one-dimensional array object whose elements contain references to objects of
type String .

The newInstance method of the Array class

http://cnx.org/content/m44200/1.2/

OpenStax-CNX module: m44200 4

The code in Listing 1 (p. 4) calls the static method of the Array class named newInstance to
create the array object and to store the object's reference in a reference variable of type Object named
v1 .

(Note that there are two overloaded versions of the newInstance method in the Array class. I will
discuss the other one later.)

Listing 1: Using the newInstance method.

Object v1 = Array.newInstance(Class.forName("java.lang.String"),

3);

Two parameters required
This version of the newInstance method requires two parameters. The �rst parameter speci�es the

component type. This must be a reference to a Class object representing the component type of the new
array object.

The second parameter, of type int , speci�es the length of the new array object.
The Class object
The second parameter that speci�es the array length is fairly obvious. However, you may need some help

with the �rst parameter. Here is part of what Sun has to say about a Class object.
"Instances of the class Class represent classes and interfaces in a running Java application. Every

array also belongs to a class that is re�ected as a Class object that is shared by all arrays with the same
element type and number of dimensions. The primitive Java types (boolean, byte, char, short, int, long,
�oat, and double), and the keyword void are also represented as Class objects."

Getting a reference to a Class object
I know of three ways to get (or refer to) a Class object.

• Class objects for primitive types
• The getClass method
• The forName method

Class objects for primitive types
There are nine prede�ned Class objects that represent the eight primitive types and void. These are

created by the Java Virtual Machine, and have the same names as the primitive types that they represent:
boolean , byte , char , short , int , long , �oat , and double . You can refer to these class
objects using the following syntax:

• boolean.class,
• int.class,
• �oat.class, etc.

I will illustrate this later in this module.
The getClass method
If you have a reference to a target object (ordinary object or array object), you can gain access to

a Class object representing the class from which that object was instantiated by calling the getClass
method of the Object class, on that object.

The getClass method returns a reference of type Class that refers to a Class object representing
the class from which the target object was instantiated.

The forName method
The static forName method of the Class class accepts the name of a class or interface as an incoming

String parameter, and returns the Class object associated with the class or interface having the given
string name.

(The forName method cannot be used with primitive types as a parameter.)

http://cnx.org/content/m44200/1.2/

OpenStax-CNX module: m44200 5

Class object for the String class
Referring back to Listing 1 (p. 4) , you will see that the �rst parameter passed to the newInstance

method was a reference to a Class object representing the String class.
Thus, the statement in Listing 1 (p. 4) creates a one-dimensional array object, of component type

String , three elements in length.
The reference to the array object is saved in the generic reference variable of type Object .
(In case you haven't recognized it already, this is an alternative to syntax such as
new String[3] .
Note that there are no square brackets in this alternative approach. Thus, it might be said that this

approach is more mainstream OOP than the approach that requires the use of square brackets.)
Populate the array object
The code in Listing 2 (p. 5) uses two static methods of the Array class to populate the three

elements of the array object with references to objects of type String .

Listing 2: Populate the array object.

for(int i = 0; i < Array.getLength(v1);i++){

Array.set(v1, i, "a"+i);

}//end for loop

The getLength method
The getLength method of the Array class is used in Listing 2 (p. 5) to get the length of the

array for use in the conditional expression of a for loop.
Note that unlike the sample programs in the previous module (that stored the array object's reference

as type Object), it was not necessary to cast the reference to type String[] in order to get the length
.

The set method
The set method of the Array class is used in Listing 2 (p. 5) to store references to String objects

in the elements of the array object.
Again, unlike the programs in the previous module, it was not necessary to cast the array reference to

type String[] to access the elements. In fact, there are no square brackets anywhere in Listing 2 (p. 5) .
Display the data
Listing 3 (p. 5) uses a similar for loop to display the contents of the String objects whose references

are stored in the elements of the array object.

Listing 3: Display the data.

for(int i = 0; i < Array.getLength(v1); i++){

System.out.print(Array.get(v1, i) + " ");

}//end for loop

No square brackets
Once again, note that no casts, and no square brackets were required in Listing 3 (p. 5) . In fact, this

approach makes it possible to deal with one-dimensional array objects using a syntax that is completely
devoid of square brackets.

Rather than using square brackets to access array elements, this is a method-oriented approach to the
use of array objects. This makes it possible to treat array objects much the same as we treat ordinary objects
in Java.

A two-dimensional rectangular array object tree
Next, I will use the methods of the Array class to create, populate, and display a rectangular two-

dimensional array object tree, whose elements contain references to objects of the class String .

http://cnx.org/content/m44200/1.2/

OpenStax-CNX module: m44200 6

Another overloaded version of newInstance
To accomplish this, I will use the other overloaded version of the newInstance method. This version

requires a reference to an array object of type int as the second parameter.
(Note that the Sun documentation describes two di�erent behaviors for this method, depending on the

whether the �rst parameter represents a non-array class or interface, or represents an array type. This
sample program illustrates the �rst possibility.)

The second parameter
As mentioned above, the version of the newInstance method that I am going to use requires a reference

to an array object of type int as the second parameter.
(The length of the array object of type int speci�es the number of dimensions of the multi-dimensional

array object. The contents of the elements of the array object of type int specify the sizes of those
dimensions.)

Thus, my �rst task is to create and populate an array object of type int .
An array object of type int
Listing 4 (p. 6) shows the code required to create and populate the array object of type int . This is a

one-dimensional array object having two elements (length equals 2). The �rst element is populated with
the int value 2 and the second element is populated with the int value 3.

Listing 4: An array object of type int.

Object v2 = Array.newInstance(int.class,2);

Array.setInt(v2, 0, 2);

Array.setInt(v2, 1, 3);

Why do we need this array object?
When this array object is used later, in conjunction with the version of the newInstance method that

requires a reference to an array object of type int as the second parameter, this array object will specify
an array object having two dimensions (a rectangular array). The rectangular array will have two rows
and three columns.

Same newInstance method as before
Note that Listing 4 (p. 6) uses the same version of the newInstance method that was used to create

the one-dimensional array object in Listing l (p. 4) .
Class object representing int
Note the syntax of the �rst parameter passed to the newInstance method in Listing 4 (p. 6) . As

mentioned earlier, this is a reference to the prede�ned Class object that represents the primitive type int
. This causes the component type of the array object to be type int .

The setInt method
You should also note the use of the setInt method of the Array class to populate each of the two

elements in the array in Listing 4 (p. 6) (with int values of 2 and 3 respectively).
The two-dimensional array object tree
Listing 5 (p. 6) uses the other overloaded version of the newInstance method to create a two-

dimensional array object tree, having two rows and three columns.

Listing 5: The two-dimensional array object tree.

Object v3 = Array.newInstance(Class.forName("java.lang.String"),

(int[])v2);

A reference to the array object at the root of the tree is stored in the reference variable of type Object
named v3 . Note that the tree is designed to store references to objects of type String .

http://cnx.org/content/m44200/1.2/

OpenStax-CNX module: m44200 7

(The number of dimensions and the size of each dimension are speci�ed by the reference to the array
object of type int passed as the second parameter.)

Square-bracket cast is required here
The required type of the second parameter for this version of the newInstance method is int[] .

Therefore, there was no way for me to avoid the use of square brackets. I could either store the reference to
the array object as type Object and cast it before passing it to the method, (which I did), or save it
originally as type int[] , (which I didn't). Either way, I would have to know about the type int[] .

Populate the leaf elements
The nested for loop in Listing 6 (p. 7) uses the various methods of the Array class to populate the

elements in the leaf array objects with references to objects of the class String .

Listing 6: Populate the leaf elements.

for(int i=0;i < Array.getLength(v3);i++){

for(int j=0;j < Array.getLength(Array.get(v3,i));j++){

Array.set(Array.get(v3,i),j,"b" + (i+1)*(j+1));

}//end inner loop

}//end outer loop

Admittedly, the code in Listing 6 (p. 7) is a little complex. However, there is really nothing new there, so
I won't discuss it further.

Display the data
Similarly, the code in Listing 7 (p. 7) uses the methods of the Array class in a nested for loop to

get and display the contents of the String objects whose references are stored in the elements of the leaf
array objects. Again, there is nothing new here, so I won't discuss this code further.

Listing 7: Display the data.

for(int i=0;i < Array.getLength(v3);i++){

for(int j=0;j < Array.getLength(Array.get(v3,i));j++){

System.out.print(Array.get(Array.get(v3,i),j) + " ");

}//end inner loop

System.out.println();

}//end outer loop

System.out.println();

Very few square brackets
I will point out that with the exception of the requirement to create and pass an array object as type

int[] , it was possible to write this entire example without the use of square brackets. This further illustrates
the fact that the Array class makes it possible to create and work with array objects in a method-oriented
manner, almost devoid of the use of square-bracket notation.

Sorting and Searching
Many college professors require their students to spend large amounts of time reinventing algorithms for

sorting and searching (and for various collections and data structures as well). There was probably a time
in history when that was an appropriate use of a student's time. However, in my opinion, that time has
passed.

Reuse, don't reinvent
Through a combination of the Arrays class, and the Java Collections Framework , most of the

sorting, searching, data structures, and collection needs that you might have are readily available without a
requirement for you to reinvent them.

(One of the most important concepts in OOP is reuse, don't reinvent .)

http://cnx.org/content/m44200/1.2/

OpenStax-CNX module: m44200 8

I will now illustrate sorting and searching using static methods of the Arrays class.
(Note that the Arrays class is di�erent from the Array class discussed earlier.)
Create, populate, and display an array object
To give us something to work with, Listing 8 (p. 8) creates, populates, and displays the contents of an

array object. Note that the array object is populated with references to String objects. There is nothing
new here, so I won't discuss the code in Listing 8 (p. 8) in detail.

Listing 8: Create, populate, and display an array object.

Object v4 = Array.newInstance(Class.forName("java.lang.String"),

8);

//Populate the array object.

// Create a gap in the data.

for(int i = 0; i < Array.getLength(v4); i++){

if(i < 4){

Array.set(v4,i,"c"+(8-i));}

else{

Array.set(v4,i,"c"+(18-i));}

}//end for loop

//Display the raw data

for(int i = 0; i < Array.getLength(v4); i++){

System.out.print(Array.get(v4,i)+ " ");

}//end for loop

The output
The code in Listing 8 (p. 8) produces the following output on the screen:

c8 c7 c6 c5 c14 c13 c12 c11

Note that the order of this data is generally descending, and there is no string encapsulating the characters
c4 .

Sort and display the data
The code in Listing 9 (p. 8) uses the sort method of the Arrays class to sort the array data into

ascending order.

Listing 9: Sort and display the data.

Arrays.sort((Object[])v4);

//Display the sorted data

for(int i = 0; i < Array.getLength(v4); i++){

System.out.print(Array.get(v4, i) + " ");

}//end for loop

The output
The code in Listing 9 (p. 8) displays the sorted contents of the array object, producing the following

output on the computer screen :

c11 c12 c13 c14 c5 c6 c7 c8

http://cnx.org/content/m44200/1.2/

OpenStax-CNX module: m44200 9

Note that the order of the data in the array object has been modi�ed, and the array data is now in ascending
order.

(This order is based on the natural ordering of the String data. I discuss other ways to order sorted
data in conjunction with the Comparable and Comparator interfaces in my modules on the Java
Collections Framework.)

Binary search
A binary search is a search algorithm that can very quickly �nd an item stored in a sorted collection of

items. In this case, the collection of items is stored in an array object, and the data is sorted in ascending
order.

Search for an existing string
Listing 10 (p. 9) uses the binarySearch method of the Arrays class to perform a search for an

existing String object whose reference is stored in the sorted array. The code searches for the reference to
the String object encapsulating the characters c5 .

Listing 10: Search for an existing string.

System.out.println(Arrays.binarySearch((Object[])v4,"c5"));

The result of the search
The code in Listing 10 (p. 9) displays the numeral 4 on the screen.
When the binarySearch method �nds a match, it returns the index value of the matching element.

If you go back and look at the sorted contents (p. 8) of the array shown earlier, you will see that this is the
index of the element containing a reference to a String object that encapsulates the characters c5 .

Search for a non-existing string
The code in Listing 11 (p. 9) uses the binarySearch method to search for a reference to a String

object that encapsulates the characters c4 . As I indicated earlier, a String object that encapsulates
these characters is not represented in the sorted array object.

Listing 11: Search for a non-existing string.

System.out.println(Arrays.binarySearch((Object[])v4,"c4"));

The result of the search
The code in Listing 11 (p. 9) produces the following negative numeral on the screen: -5 .
Here is Sun's explanation for the value returned by the binarySearch method:
"Returns: index of the search key, if it is contained in the list; otherwise, (-(insertion point) - 1). The

insertion point is de�ned as the point at which the key would be inserted into the list: the index of the �rst
element greater than the key, or list.size(), if all elements in the list are less than the speci�ed key. Note
that this guarantees that the return value will be >= 0 if and only if the key is found."

Thus, the negative return value indicates that the method didn't �nd a match. The absolute value of
the return value can be used to determine the index of the reference to the target object if it did exist in the
sorted list. I will leave it as an exercise for the student to interpret Sun's explanation beyond this simple
explanation.

Other capabilities
In addition to sorting and searching, the Arrays class provides several other methods that can be used

to manipulate the contents of array objects in Java.

5 Summary

An array object has the following members (in addition to the data stored in the object):

• A public �nal variable named length

http://cnx.org/content/m44200/1.2/

OpenStax-CNX module: m44200 10

• An overridden version of the public method named clone
• Default versions of all the other methods inherited from the class named Object

Every array object implements the Cloneable and Serializable interfaces.
A clone of a multidimensional array is shallow. Therefore, you should exercise caution when cloning array

objects.
Because array objects implement the Serializable interface, they can be serialized and later recon-

structed.
Every array also has an associated Class object.
The classes named Array and Arrays provide methods that you can use to work with array objects.
The Array class provides static methods to dynamically create and access Java array objects.
The Arrays class contains various methods for manipulating arrays (such as sorting and searching).

It also contains a static factory method that allows arrays to be viewed as lists.
Class objects are required when using the methods of the Array class to dynamically create Java array

objects.
There are nine prede�ned Class objects that represent the eight primitive types and void. They are

accessed using the following syntax: boolean.class, int.class, etc.
Three ways to get a Class object are:

• Class objects for primitive types: int.class , etc.
• The getClass method
• The forName method

The methods of the Array class make it possible to deal with one-dimensional array objects using a syntax
that is completely devoid of square brackets. This is a method-oriented approach to the use of array
objects. This makes it possible to treat array objects much the same as we treat ordinary objects in Java.
The required syntax for multi-dimensional array objects is mostly devoid of square brackets.

The Arrays class provides methods for sorting and searching array objects as well as performing other
operations on array objects as well.

Through a combination of the Arrays class and the Java Collections Framework, most of the sort-
ing, searching, data structures, and collection needs that you might have are readily available without a
requirement for you to reinvent them.

One of the most important concepts in OOP is reuse, don't reinvent.

6 What's next?

The next module will explain the use of the this and super keywords.

7 Miscellaneous

This section contains a variety of miscellaneous information.

note: Housekeeping material

• Module name: Java OOP: Array Objects, Part 3
• File: Java1626.htm
• Published: August 8, 2012
• Revised: �

note: Disclaimers: Financial : Although the Connexions site makes it possible for you to
download a PDF �le for this module at no charge, and also makes it possible for you to purchase a

http://cnx.org/content/m44200/1.2/

OpenStax-CNX module: m44200 11

pre-printed version of the PDF �le, you should be aware that some of the HTML elements in this
module may not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

8 Complete program listing

A complete listing of the program is shown in Listing 12 (p. 11) below.

Listing 12: Complete program listing.

/*File Array08.java

Copyright 2002, R.G.Baldwin

Rev 2/10/02

This program illustrates the use of

static methods of the Array class to

dynamically create and access Java

arrays.

It also illustrates the use of static

methods of the Arrays class to sort

and search array objects.

Tested using JDK 1.3 under Win 2000.

**************************************/

import java.lang.reflect.Array;

import java.util.Arrays;

public class Array08{

public static void main(

String[] args){

try{

//Create, populate, and display a

// one-dimensional array object

// whose elements contain

// references to objects of type

// String.

//Create the array object

Object v1 = Array.newInstance(

http://cnx.org/content/m44200/1.2/

OpenStax-CNX module: m44200 12

Class.forName(

"java.lang.String"), 3);

//Populate the array object

for(int i = 0; i <
Array.getLength(v1); i++){

Array.set(v1, i, "a"+i);

}//end for loop

//Display the data

for(int i = 0; i <
Array.getLength(v1); i++){

System.out.print(

Array.get(v1, i) + " ");

}//end for loop

System.out.println();

System.out.println();

//Create, populate, and display a

// rectangular two-dimensional

// array object tree whose

// elements contain references

// to objects of type String.

//First create an array object of

// type int required as a

// parameter to the newInstance

// method. Populate it to later

// specify a rectangular array

// object tree with two rows and

// three columns.

Object v2 = Array.newInstance(

int.class, 2);

Array.setInt(v2, 0, 2);

Array.setInt(v2, 1, 3);

//Now create the actual two-

// dimensional array object tree.

Object v3 = Array.newInstance(

Class.forName(

"java.lang.String"), (int[])v2);

//Populate the leaf elements with

// references to objects of type

// String.

for(int i=0;i<

Array.getLength(v3);i++){

for(int j=0;j<
Array.getLength(

Array.get(v3,i));j++){

Array.set(Array.get(v3,i), j,

"b" + (i+1)*(j+1));

}//end inner loop

http://cnx.org/content/m44200/1.2/

OpenStax-CNX module: m44200 13

}//end outer loop

//Display the data encapsulated

// in the String objects.

for(int i=0;i<Array.getLength(v3);

i++){

for(int j=0;j<Array.getLength(

Array.get(v3,i));j++){

System.out.print(Array.get(

Array.get(v3,i), j) + " ");

}//end inner loop

System.out.println();

}//end outer loop

System.out.println();

//Now illustrate sorting and

// searching using methods of

// the arrays class.

//Create the array object

Object v4 = Array.newInstance(

Class.forName(

"java.lang.String"), 8);

//Populate the array object.

// Create a gap in the data.

for(int i = 0; i <
Array.getLength(v4); i++){

if(i<4){Array.set(v4, i,

"c"+(8-i));}

else{Array.set(v4, i,

"c"+(18-i));}

}//end for loop

//Display the raw data

for(int i = 0; i <
Array.getLength(v4); i++){

System.out.print(Array.get(v4, i)

+ " ");

}//end for loop

System.out.println();

//Sort array data into

// ascending order.

Arrays.sort((Object[])v4);

//Display the sorted data

for(int i = 0; i <
Array.getLength(v4); i++){

System.out.print(

Array.get(v4, i) + " ");

}//end for loop

http://cnx.org/content/m44200/1.2/

OpenStax-CNX module: m44200 14

System.out.println();

//Search for an existing String

System.out.println(

Arrays.binarySearch((Object[])v4,

"c5"));

//Search for a non-existing String

System.out.println(

Arrays.binarySearch((Object[])v4,

"c4"));

}catch(ClassNotFoundException e){

System.out.println(e);}

}//end main

}//end class Array08

-end-

http://cnx.org/content/m44200/1.2/

