
Connexions module: m44201 1

Java OOP: The this and super

Keywords
∗

Richard Baldwin

This work is produced by The Connexions Project and licensed under the

Creative Commons Attribution License †

Abstract

Baldwin explains the use of the keywords this and super, and provides sample programs to illustrate

the use these keywords for several purposes.

1 Table of Contents

• Preface (p. 1)

· Viewing tip (p. 1)

* Figures (p. 1)
* Listings (p. 2)

• Preview (p. 2)
• Discussion and sample code (p. 2)
• Summary (p. 14)
• What's next? (p. 15)
• Miscellaneous (p. 15)

2 Preface

This module is one of a series of modules designed to teach you about Object-Oriented Programming (OOP)
using Java.

2.1 Viewing tip

I recommend that you open another copy of this document in a separate browser window and use the
following links to easily �nd and view the �gures and listings while you are reading about them.

2.1.1 Figures

• Figure 1 (p. 3) . The extends keyword.

∗Version 1.2: Aug 8, 2012 10:31 am -0500
†http://creativecommons.org/licenses/by/3.0/

http://cnx.org/content/m44201/1.2/

Connexions module: m44201 2

2.1.2 Listings

• Listing 1 (p. 4) . The program named This01.
• Listing 2 (p. 6) . The program named This02.
• Listing 3 (p. 7) . The program named This03.
• Listing 4 (p. 9) . The program named Super3.
• Listing 5 (p. 12) . The program named Super4.

3 Preview

This module explains the use of the keywords this and super . Short sample programs illustrate how
you can use these keywords for several purposes.

I will discuss and illustrate the use of the this keyword in the following situations:

• To bypass local variables or parameters that hide member variables having the same name, in order to
access the member variable.

• To make it possible for one overloaded constructor to call another overloaded constructor in the same
class.

• To pass a reference to the current object to a method belonging to a di�erent object (as in implementing
callbacks, for example).

I will also discuss and illustrate the use of the super keyword in the following situations:

• To bypass the overridden version of a method in a subclass and execute the version in the superclass.
• To bypass a member variable in a subclass in order to access a member variable having the same name

in a superclass.
• To cause a constructor in a subclass to call a parameterized constructor in the immediate superclass.

4 Discussion and sample code

You already know quite a lot about OOP
By now you know that an object is an instance of a class . You know that all variables and methods

in Java must be contained in a class or an object. You know that the three primary characteristics of an
object-oriented programming language are:

• encapsulation
• inheritance
• polymorphism .

If you have been studying this series of modules on the Essence of OOP in Java, you already know quite a
lot about OOP in general, and the implementation of OOP in Java in particular.

A few more important OOP/Java concepts
However, there are a few more important concepts that I haven't previously discussed in this series of

modules. In this module, I will explain the use of the keywords this and super .
Data and methods
The class provides the plan from which objects are built. This plan de�nes the data that is to be

stored in an object, and the methods for manipulating that data. The data is variously referred to as data
members, �elds , and variables , depending on which book you are reading.

Non-static and static
The data can be further sub-divided into non-static and static , often referred to as i nstance variables

and class variables respectively.

http://cnx.org/content/m44201/1.2/

Connexions module: m44201 3

The methods are also often referred to as member methods , and they can also be static or non-static
. Static methods are often referred to as class methods while non-static methods are often referred to as
instance methods .

Instance variables and instance methods
The class body contains the declarations for, and possibly the initialization of all data members (both

class variables and instance variables) as well as the full de�nition of all methods .
In this module, we will be particularly interested in instance variables and instance methods.
Every class is a subclass of Object
By default, every class in Java extends (either directly or indirectly) the class named Object . A new

class may either extend Object , or extend another class that extends Object , or extend another class
further down the inheritance hierarchy.

The immediate parent class of a new class is known as its superclass , and the new class is known as
the subclass .

(Sometimes we use the word superclass to indicate the collection of classes in the inheritance hierarchy
from which a speci�c class is derived.)

If you do not specify the superclass for a new class, it will extend Object by default.
The extends keyword
The keyword extends is used in the class declaration to specify the immediate superclass of the new

class using the syntax shown in Figure 1 (p. 3) .

The extends keyword.

class NewClass extends SuperClassName{

//body of class

}//end class definition

Figure 1: The extends keyword.

Inheritance
A class inherits the variables and methods of its superclass, and of the superclass of that class, etc., all

the way back up the family tree to the single class Object , which is the root of all inheritance.
Thus, an object that is instantiated from a class contains all the instance variables and all the instance

methods de�ned by that that class and de�ned by all its ancestors.
However, the methods may have been overridden one or more times along the way. Also, access to

those variables and methods may have been restricted through the use of the public , private , and
protected keywords.

(There is another access level, often referred to as package private , which is what you get when you
don't use an access keyword.)

The this keyword
Every instance method in every object in Java receives a reference named this when the method is

called. The reference named this is a reference to the object on which the method was called. It can be
used for any purpose for which such a reference is needed.

http://cnx.org/content/m44201/1.2/

Connexions module: m44201 4

Three common situations
There are at least three common situations where such a reference is needed:

• To bypass local variables or parameters that hide member variables having the same name, in order to
access the member variable.

• To make it possible for one overloaded constructor to call another overloaded constructor in the same
class.

• To pass a reference to the current object to a method belonging to a di�erent object (as in implementing
callbacks, for example).

Normally, instance methods belonging to an object have direct access to the instance variables belonging to
that object, and to the class variables belonging to the class from which that object was instantiated.

(Class methods never have access to instance variables or instance methods.)
Name can be duplicated
However, the name of a method parameter or constructor parameter can be the same as the name of an

instance variable belonging to the object or a class variable belonging to the class. It is also allowable for
the name of a local variable to be the same as the name of an instance variable or a class variable. In this
case, the local variable or the parameter is said to hide the member variable having the same name.

Reference named this is passed to instance methods
As mentioned above, whenever an instance method is called on an object, a hidden reference named this

is always passed to the method. The this reference always refers to the object on which the method was
called. This makes it possible for the code in the method to refer back to the object on which the method
was called.

The reference named this can be used to access the member variables hidden by the local variables or
parameters having of the same name.

The sample program named This01
The sample program shown in Listing 1 (p. 4) illustrates the use of the this reference to access a hidden

instance variable named myVar and a hidden class variable named yourVar .

Listing 1: The program named This01.

/*File This01.java

Copyright 2002, R.G.Baldwin

Illustrates use of this keyword to

access hidden member variables.

Tested using JDK 1.4.0 under Win2000

The output from this program is:

myVar parameter = 20

local yourVar variable = 1

Instance variable myVar = 5

Class variable yourVar = 10

**************************************/

class This01 {

int myVar = 0;

static int yourVar = 0;

//Constructor with parameters named

http://cnx.org/content/m44201/1.2/

Connexions module: m44201 5

// myVar and yourVar

public This01(int myVar,int yourVar){

this.myVar = myVar;

this.yourVar = yourVar;

}//end constructor

//---------------------------------//

//Method with parameter named myVar

// and local variable named yourVar

void myMethod(int myVar){

int yourVar = 1;

System.out.println(

"myVar parameter = " + myVar);

System.out.println(

"local yourVar variable = "

+ yourVar);

System.out.println(

"Instance variable myVar = "

+ this.myVar);

System.out.println(

"Class variable yourVar = "

+ this.yourVar);

}//end myMethod

//---------------------------------//

public static void main(

String[] args){

This01 obj = new This01(5,10);

obj.myMethod(20);

}//end main method

}//End This01 class definition.

The key points
The key points to observe in the program is Listing 1 (p. 4) are:

• When the code refers to myVar or yourVar , the reference resolves to either an incoming parameter
or to a local variable having that name.

• When the code refers to this.myVar or this.yourVar , the reference resolves to the corresponding
instance variable and class variable having that name.

To summarize this situation, every time an instance method is called, it receives a hidden reference named
this . That is a reference to the object on which the method was called.

The code in the method can use that reference to access any instance member of the object on which it
was called, or any class member of the class from which the object was instantiated.

However, when class methods are called, they do not receive such a hidden reference, and therefore, they
cannot refer to any instance members of any object instantiated from the class. They can only access class
members of the same class.

Calling other constructors of the same class
Now I am going to discuss and illustrate the second common situation listed earlier.
A class can de�ne two or more overloaded constructors having the same name and di�erent argument

lists. Sometimes it is useful for one overloaded constructor to call another overloaded constructor in the

http://cnx.org/content/m44201/1.2/

Connexions module: m44201 6

same class. When this is done, the constructor being called is referred to as though it were a method whose
name is this , and whose argument list matches the argument list of the constructor being called.

The sample program named This02
This situation is illustrated in the program named This02 shown in Listing 2 (p. 6) .

Listing 2: The program named This02.

/*File This02.java

Copyright 2002, R.G.Baldwin

Illustrates use of this keyword for one

overloaded constructor to access

another overloaded constructor of the

same class.

Tested using JDK 1.4.0 under Win2000

The output from this program is:

Instance variable myVar = 15

**************************************/

class This02 {

int myVar = 0;

public static void main(

String[] args){

This02 obj = new This02();

obj.myMethod();

}//end main method

//---------------------------------//

//Constructor with no parameters

public This02(){

//Call parameterized constructor

this(15);

}//end constructor

//---------------------------------//

//Constructor with one parameter

public This02(int var){

myVar = var;

}//end constructor

//---------------------------------//

//Method to display member variable

// named myVar

void myMethod(){

System.out.println(

"Instance variable myVar = "

+ myVar);

}//end myMethod

http://cnx.org/content/m44201/1.2/

Connexions module: m44201 7

}//End This02 class definition.

Calling a noarg constructor
The main method in Listing 2 (p. 6) instantiates a new object by applying the new operator to the

noarg constructor for the class named This02 .
(The common jargon for a constructor that doesn't take any parameters is a noarg constructor.)
The noarg constructor calls a parameterized constructor
The code in the noarg constructor uses the this keyword to call the other overloaded constructor,

passing an int value of 15 as a parameter.
That constructor stores the value of the incoming parameter (15) in the instance variable named myVar

. Then control returns to the noarg constructor, which in turn returns control to the main method.
When control returns to the main method, the new object has been constructed, and the instance variable
named myVar belonging to that object contains the value 15.

Display the value of the instance variable
The next statement in the main method calls the method named myMethod on the object, which

causes the value stored in the instance variable (15) to be displayed on the screen.
The most important statement
For purposes of this discussion, the most important statement in the program is the statement that reads:

this(15);

This is the statement used by one overloaded constructor to call another overloaded constructor.
Callbacks
An extremely important concept in programming is the third situation mentioned in the earlier list (p.

4) . This is a situation where a method in one object calls a method in another object and passes a reference
to itself as a parameter.

(This is sometimes referred to as registration. That is to say, one object registers itself on another
object.)

The method in the second object saves the reference that it receives as an incoming parameter. This
makes it possible for a method in the second object to make a callback to the �rst object sometime later.
This is illustrated in the program named This03 , shown in Listing 3 (p. 7) .

Listing 3: The program named This03 .

/*File This03.java

Copyright 2002, R.G.Baldwin

Illustrates using the this keyword in

a callback scenario.

Tested using JDK 1.4.0 under Win2000

The output from this program is:

Instance variable myVar = 15

**************************************/

class This03 {

public static void main(

String[] args){

ClassA objA = new ClassA();

ClassB objB = new ClassB();

http://cnx.org/content/m44201/1.2/

Connexions module: m44201 8

objA.goRegister(objB);

objB.callHimBack();

objA.showData();

}//end main method

}//End This03 class definition.

//===================================//

class ClassA{

int myVar;

void goRegister(ClassB refToObj){

refToObj.registerMe(this);

}//end goRegister

//---------------------------------//

void callMeBack(int var){

myVar = var;

}//end callMeBack

//---------------------------------//

void showData(){

System.out.println(

"Instance variable myVar = "

+ myVar);

}//end showData

}//end ClassA

//===================================//

class ClassB{

ClassA ref;

void registerMe(ClassA var){

ref = var;

}//end registerMe

//---------------------------------//

void callHimBack(){

ref.callMeBack(15);

}//end callHimBack

}//End ClassB class definition

Not intended to be useful
Note that the program in Listing 3 (p. 7) is intended solely to illustrate the concept of a callback, and

is not intended to do anything useful. This is a rather long and convoluted explanation, so please bear with
me.

The main method begins by instantiating two objects, one each from the classes named ClassA and
ClassB .

Go register yourself
Then the main method sends a message to objA telling it to go register itself on objB . A reference

http://cnx.org/content/m44201/1.2/

Connexions module: m44201 9

to objB is passed as a parameter to the method named goRegister belonging to objA .
The code in objA uses this reference to call the method named registerMe on objB , passing

this as a parameter. In other words, the code in objA calls a method belonging to objB passing a
reference to itself as a parameter. The code in objB saves that reference in an instance variable for later
use.

Make a callback
Then the main method sends a message to objB asking it to use the saved reference to make a

callback to objA . The code in the method named callHimBack uses the reference to objA saved
earlier to call the method named callMeBack on objA , passing 15 as a parameter. The method named
callMeBack belonging to objA saves that value in an instance variable.

Show the data
Finally, the main method calls the showData method on objA to cause the value stored in the

instance variable belonging to objA to be displayed on the computer screen.
Callbacks are important
Again, this program is provided solely to illustrate the concept of a callback using the this keyword.

In practice, callbacks are used throughout Java, but they are implemented in a somewhat more elegant way,
making use of interfaces.

For example, interfaces with names like Observer and MouseListener are commonly used to register
observer objects on observable objects (sometimes referred to as listeners and sources). Then later in
the program, when something of interest happens on the observable object (the source), all registered
observer objects (the listeners), are noti�ed of the event.

The main point regarding the this reference
The main point of this discussion is that the this reference is available to all instance methods belonging

to an object, and can be used whenever there is a need for a reference to the object on which the method is
called.

To disambiguate something
At least one prominent author uses the word disambiguate to describe the process described by the �rst

item in the earlier list (p. 4) , where the this keyword is used to bypass one variable in favor of a di�erent
variable having the same name. I will also use that terminology in the following discussion.

Three uses of the super keyword
Here are three common uses of the super keyword:

• If your class overrides a method in a superclass, you can use the super keyword to bypass the
overridden version in the class and execute the version in the superclass.

• If a local variable in your method or a member variable in your class hides a member variable in the
superclass (having the same name), you can use the super keyword to access the member variable
in the superclass.

• You can also use super in a constructor of your class to call a parameterized constructor in the
superclass.

The program named Super3
The program in Listing 4 (p. 9) uses super to call a parameterized constructor in the superclass from

the subclass constructor. This is an important use of super .
The program also uses this and super to disambiguate a local variable, an instance variable of the

subclass, and an instance variable of the superclass. All three variables have the same name.

Listing 4: The program named Super3.

/*File Super3.java

Copyright 2002, R.G.Baldwin

Illustrates use of super reference to

http://cnx.org/content/m44201/1.2/

Connexions module: m44201 10

access constructor in superclass. Also

illustrates use of super to

disambiguate instance variable in

subclass from instance variable in

superclass. Illustrates use of this

to disambiguate local variable from

instance variable in subclass.

Tested using JDK 1.4.0 under Win2000

The output from this program is:

In SuperClass constructor.

Setting superclass instance var to 500

In subclass constructor.

Setting subclass instance var to 400

In main

Subclass instance var = 400

In method myMeth

Local var = 300

Subclass instance var = 400

SuperClass instance var = 500

**************************************/

class SuperClass{

int data;

//Parameterized superclass

// constructor

public SuperClass(int val){

System.out.println(

"In SuperClass constructor. ");

System.out.println(

"Setting superclass instance "

+ "var to " + val);

data = val;

System.out.println();//blank line

}//end SuperClass constructor

}//end SuperClass class definition

//===================================//

class Super3 extends SuperClass{

//Instance var in subclass has same

// name as instance var in superclass

int data;

//Subclass constructor

public Super3(){

//Call parameterized SuperClass

http://cnx.org/content/m44201/1.2/

Connexions module: m44201 11

// constructor

super(500);

System.out.println(

"In subclass constructor.");

System.out.println(

"Setting subclass instance var "

+ "to 400");

data = 400;

System.out.println();//blank line

}//end subclass constructor

//---------------------------------//

//Method illustrates use of this and

// super to disambiguate local

// variable, instance variable of

// subclass, and instance variable

// of superclass. All three

// variables have the same name.

void myMeth(){

int data = 300;//local variable

System.out.println(

"In method myMeth");

System.out.println("Local var = "

+ data);

System.out.println(

"Subclass instance var = "

+ this.data);

System.out.println(

"SuperClass instance var = "

+ super.data);

}//end method myMeth

//---------------------------------//

public static void main(

String[] args){

Super3 obj = new Super3();

System.out.println("In main");

System.out.println(

"Subclass instance var = "

+ obj.data);

System.out.println();//blank line

obj.myMeth();

}//end main method

}//End Super3 class definition.

The keyword super is used twice in the program in Listing 4 (p. 9) .
Call a parameterized constructor
The �rst usage of the keyword super appears as the �rst executable statement in the noarg constructor

for the class named Super3 . This statement reads as follows:

super(500);

http://cnx.org/content/m44201/1.2/

Connexions module: m44201 12

This statement causes the parameterized constructor for the immediate superclass (the class named Su-

perClass) of the class named Super3 , to be executed before the remaining code in the constructor for
Super3 is executed.

This is the mechanism by which you can cause a parameterized constructor in the immediate superclass
to be executed.

What if you don't do this?
If you don't do this, an attempt will always be made to call a noarg constructor on the superclass before

executing the remaining code in the constructor for your class.
(That is why you should almost always make certain that the classes that you de�ne have a noarg

constructor in addition to any parameterized constructors that you may de�ne.)
First executable statement in constructor
When super(parameters) is used to call the superclass constructor, it must always be the �rst

executable statement in the constructor.
Whenever you call the constructor of a class to instantiate an object, if your constructor doesn't have a

call to super as the �rst executable statement in the constructor, the call to the noarg constructor in
the superclass is made automatically.

In other words, in order to construct an object of a class, it is necessary to �rst construct that part of the
object attributable to the superclass. That normally happens automatically, making use of the superclass
constructor that doesn't take any parameters.

Calling a parameterized constructor
If you want to use a version of the superclass constructor that takes parameters, you can make your own

call to super(parameters) as the �rst executable statement in your constructor (as was done in this
program).

Accessing a superclass member variable
The second use of the super keyword in the program shown in Listing 4 (p. 9) uses the keyword to

bypass an instance variable named data in the class named Super3 , to access and display the value of
an instance variable named data in the superclass named SuperClass .

Note that in that same section of code, the this keyword is used to bypass a local variable named
data in order to display the value of an instance variable named data in the class named Super3 .

Similarly, a statement without the use of either this or super is used to display the value of a local
variable named data .

To disambiguate
Therefore, as stated earlier, the program uses this and super to disambiguate a local variable, an

instance variable of the subclass, and an instance variable of the superclass, where all three variables have
the same name.

Accessing overridden superclass method
As mentioned earlier (p. 9) , if your method overrides a method in its superclass, you can use the keyword

super to call the overridden version in the superclass, possibly completely bypassing the overridden version
in the subclass.

The program named Super4
This is illustrated by the program in Listing 5 (p. 12) . This program contains an overridden version

of a superclass method named meth . The subclass version uses the value of an incoming parameter to
decide whether to call the superclass version and then to call some of its own code, or to execute its own
code exclusively.

Listing 5: The program named Super4.

/*File Super4.java

Copyright 2002, R.G.Baldwin

Illustrates calling the superclass

version of an overridden method from

http://cnx.org/content/m44201/1.2/

Connexions module: m44201 13

code in the subclass version.

Tested using JDK 1.4.0 under Win 2000.

The output from this program is:

In main

Entering overridden method in subclass

Incoming parameter is false

Subclass version only is called

Back in or still in subclass version

Goodbye from subclass version

Entering overridden method in subclass

Incoming parameter is true

SuperClass method called

Back in or still in subclass version

Goodbye from subclass version

Back in main

**************************************/

class SuperClass{

//Following method is overridden in

// the subclass.

void meth(boolean par){

System.out.println(

"Incoming parameter is " + par);

System.out.println(

"SuperClass method called");

}//end meth

}//end SuperClass class definition

//===================================//

class Super4 extends SuperClass{

//Following method overrides method

// in the superclass

void meth(boolean par){

System.out.println(

"Entering overridden method "

+ "in subclass");

//Decide whether to call

// superclass version

if(par)

//Call superclass version

super.meth(par);

else{

//Don't call superclass version

System.out.println(

"Incoming parameter is " + par);

System.out.println(

"Subclass version only is "

http://cnx.org/content/m44201/1.2/

Connexions module: m44201 14

+ "called");

}//end else

//Execute some additional code

System.out.println(

"Back in or still in subclass "

+ "version");

System.out.println(

"Goodbye from subclass version");

System.out.println();//blank line

}//end overridden meth()

//---------------------------------//

public static void main(

String[] args){

//instantiate an object of

// this type

Super4 obj = new Super4();

System.out.println("In main");

//Call overridden version of

// method

obj.meth(false);

//Call superclass version of

// method

obj.meth(true);

System.out.println("Back in main");

}//end main method

}//End Super4 class definition.

Only one statement contains super
The super keyword is used in only one statement in the program in Listing 5 (p. 12) . That statement

appears in the subclass version of an overridden method, and is as follows:

super.meth(par);

This statement is inside the body of an if statement. If the value of par is true, then this statement is
executed, causing the superclass version of the method named meth to be executed (passing the value
of par as a parameter to the superclass method). When the method returns, the remaining code in the
subclass version of the method is executed.

If the value of par is false, the above statement is bypassed, and the superclass version of the method
doesn't get executed. In this case, only the code in the subclass version is executed.

5 Summary

I have discussed and illustrated the use of the this keyword in the following common situations:

• To bypass local variables or parameters that hide member variables having the same name, in order to
access the member variable.

• To make it possible for one overloaded constructor to call another overloaded constructor in the same
class.

• To pass a reference to the current object to a method belonging to a di�erent object (as in implementing
callbacks, for example).

http://cnx.org/content/m44201/1.2/

Connexions module: m44201 15

I have also discussed and illustrated the use of the super keyword in the following situations:

• To bypass the overridden version of a method in a subclass and execute the version in the superclass.
• To bypass a member variable in a subclass in order to access a member variable having the same name

in a superclass.
• To cause a constructor in a subclass to call a parameterized constructor in the immediate superclass.

6 What's next?

The next module in this collection will teach you how to use exception handling in Java.

7 Miscellaneous

This section contains a variety of miscellaneous information.

note: Housekeeping material

• Module name: Java OOP: The this and super Keywords
• File: Java1628.htm
• Published: August 8, 2012
• Revised: �

note: Disclaimers: Financial : Although the Connexions site makes it possible for you to
download a PDF �le for this module at no charge, and also makes it possible for you to purchase a
pre-printed version of the PDF �le, you should be aware that some of the HTML elements in this
module may not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

http://cnx.org/content/m44201/1.2/

