
Connexions module: m44203 1

Java OOP: Image Processing

Algorithms, Image Inversion, and

PictureExplorer Objects
∗

R.G. (Dick) Baldwin

This work is produced by The Connexions Project and licensed under the

Creative Commons Attribution License 3.0†

Abstract

Learn how to invert images and how to display images in Ericson's PictureExplorer object.

1 Table of Contents

• Preface (p. 1)

· Viewing tip (p. 2)

* Figures (p. 2)
* Listings (p. 2)

• Preview (p. 2)
• Discussion and sample code (p. 5)
• Run the program (p. 9)
• Summary (p. 10)
• What's next? (p. 10)
• Online video links (p. 10)
• Miscellaneous (p. 10)
• Complete program listing (p. 11)

2 Preface

This module is one of a series of modules designed to teach you about Object-Oriented Programming (OOP)
using Java.

The program described in this module requires the use of the Guzdial-Ericson multimedia class library.
You will �nd download, installation, and usage instructions for the library at Java OOP: The Guzdial-Ericson
Multimedia Class Library 1 .

∗Version 1.3: Nov 14, 2012 9:31 am +0000
†http://creativecommons.org/licenses/by/3.0/
1http://cnx.org/content/m44148/latest/

http://cnx.org/content/m44203/1.3/

Connexions module: m44203 2

2.1 Viewing tip

I recommend that you open another copy of this document in a separate browser window and use the
following links to easily �nd and view the �gures and listings while you are reading about them.

2.1.1 Figures

• Figure 1 (p. 3) . The raw image.
• Figure 2 (p. 4) . The modi�ed image.
• Figure 3 (p. 5) . Output text on the command line screen.
• Figure 4 (p. ??) . javadocs description of the explore method.
• Figure 5 (p. ??) . javadocs description of the getPixels method.
• Figure 6 (p. ??) . javadocs description of the Pixel class.

2.1.2 Listings

• Listing 1 (p. 5) . The driver class.
• Listing 2 (p. 6) . Beginning of the class named Prob02Runner.
• Listing 3 (p. 6) . The beginning of the run method.
• Listing 4 (p. 7) . Implementing the algorithm.
• Listing 5 (p. 9) . Display again and terminate.
• Listing 6 (p. 11) . Complete program listing.

3 Preview

The program that I will explain in this module is designed to be used as a test of the student's understanding
of programming using Java and Ericson's media library.

The student is provided an image �le named Prob02.jpg along with a pair of PictureExplorer
windows containing the raw image and a modi�ed version of the image. (See Figure 1 (p. 3) and Figure 2
(p. 4) .)

Deduce the algorithm
The �rst part of the test is to determine if the student can examine the raw image shown in the

PictureExplorer window in Figure 1 (p. 3) and deduce the algorithm required to produce the output
shown in the PictureExplorer window in Figure 2 (p. 4) .

Implement the algorithm
The second part of the test is to determine if the student can implement the algorithm once it is established

and also satisfy some requirements for text output on the command line screen. Among other things, this
requires that the student be able to:

• Create a Picture object from an image �le.
• Write an accessor method to return a reference to the Picture object.
• Modify the pixels in the picture according to the algorithm.
• Display the raw picture and the modi�ed picture in PictureExplorer objects by calling the explore

method on the Picture object before and after it is modi�ed.

Program output
The raw image is displayed in the PictureExplorer window shown in Figure 1 (p. 3) .

http://cnx.org/content/m44203/1.3/

Connexions module: m44203 3

The raw image.

Figure 1: The raw image.

The modi�ed image is shown in the PictureExplorer window in Figure 2 (p. 4) .

http://cnx.org/content/m44203/1.3/

Connexions module: m44203 4

The modi�ed image.

Figure 2: The modi�ed image.

The required output on the command-line screen is shown by the last two lines of text in Figure 3 (p. 5)
. The other text in Figure 3 (p. 5) is produced by the system during the compilation and execution process.

http://cnx.org/content/m44203/1.3/

Connexions module: m44203 5

Output text on the command line screen.

java version "1.6.0_14"

Java(TM) SE Runtime Environment (build 1.6.0_14-b08)

Java HotSpot(TM) Client VM (build 14.0-b16, mixed mode,

sharing)

javac 1.6.0_14

Dick Baldwin

Picture, filename Prob02.jpg height 274 width 365

Figure 3: Output text on the command line screen.

The algorithm
The algorithm required to transform the image from Figure 1 (p. 3) to Figure 2 (p. 4) is:

• Set the blue color value for every pixel to zero.
• Invert the red and green color values for every pixel.

A color value is inverted by subtracting the value from 255.
Obvious that the blue color value is reduced to zero
It should be obvious to the student when comparing the two images in the PictureExplorer objects

that the blue pixel value has been set to zero for every pixel in the modi�ed image.
Color inversion is not quite so obvious
Deducing that the red and green colors in the output pixels are the inverse of the red and green colors

in the input image isn't as straightforward. However, color inversion is one of the examples provided in the
Ericson textbook, so that should serve as a clue to the student. I have also published several online tutorials
that involve color inversion.

The implementation of the algorithm will be explained below.

4 Discussion and sample code

Will explain in fragments
I will explain this program in fragments. A complete listing is provided in Listing 6 (p. 11) near the end

of the module.
I will begin with the driver class named Prob02 , which is shown in its entirety in Listing 1 (p. 5) .

Listing 1: The driver class.

public class Prob02{//the driver class

public static void main(String[] args){

Prob02Runner obj = new Prob02Runner();

http://cnx.org/content/m44203/1.3/

Connexions module: m44203 6

obj.run();

System.out.println(obj.getPicture());

}//end main

}//end class Prob02

You should already be familiar with everything in Listing 1 (p. 5) . The most important aspect of Listing
1 (p. 5) for purposes of this discussion is the call to the run method belonging to the object instantiated
from the Prob02Runner class. I will explain the run method shortly.

Beginning of the class named Prob02Runner
The class de�nition for the class named Prob02Runner begins in Listing 2 (p. 6) .

Listing 2: Beginning of the class named Prob02Runner.

class Prob02Runner{

private Picture pic = new Picture("Prob02.jpg");

public Prob02Runner(){//constructor

System.out.println("Dick Baldwin");

}//end constructor

//--//

//Accessor method

public Picture getPicture(){return pic;}

Again, you should be familiar with everything in Listing 2 (p. 6) . I will simply highlight the instantiation
of a new Picture object using an image �le as input and the saving of a reference to that object in the
private instance variable named pic .

The beginning of the run method
The run method begins in Listing 3 (p. 6) . This is where the action is, so to speak.

Listing 3: The beginning of the run method.

public void run(){

pic.addMessage("Dick Baldwin",10,20);

pic.explore();

You are already familiar with the call to the addMessage method to add my name as text to the image
encapsulated in the Picture object. (See Figure 1 (p. 3) .)

The explore method
The call to the explore method is new to this module.
The explore method is de�ned in the SimplePicture class, which is the superclass of the Picture

class. The method is inherited into the Picture class.
javadocs description of the explore method
The javadocs description of this method is shown in Figure 4 (p. ??) .

http://cnx.org/content/m44203/1.3/

Connexions module: m44203 7

Method to open a picture explorer on a copy of this simple picture.

Figure 4: javadocs description of the explore method.

Result of calling the explore method
The result of calling the explore method in Listing 3 (p. 6) is to create and display the PictureEx-

plorer object shown in Figure 1 (p. 3) .
Very important capability
The availability of the explore method and the PictureExplorer class is very important in at least

two respects:

• The explore method makes it easy to display copies of an image at various stages during the
processing of the image. Once the PictureExplorer object is created and displayed, it won't be
e�ected by subsequent changes to the image.

• The availability of a PictureExplorer object makes it easy to manually analyze the colors of the
individual pixels in an image encapsulated in that object.

Implementing the algorithm
The code in Listing 4 (p. 7) implements the algorithm required to modify the original image to make it

look like the image shown in Figure 2 (p. 4) .

Listing 4: Implementing the algorithm.

Pixel[] pixelArray = pic.getPixels();

for(Pixel pixel:pixelArray){

pixel.setRed(255 - pixel.getRed());

pixel.setGreen(255 - pixel.getGreen());

pixel.setBlue(0);

}//end for loop

In particular, the code in Listing 4 (p. 7) sets the blue color components to 0 and inverts the red and green
color components for every pixel in the picture.

One of several approaches
There are several ways to do this, and this is only one of those ways. This approach makes use of a

method named getPixels that is de�ned in the SimplePicture class and inherited into the Picture
class.

Very useful when...
This approach is particularly useful when you want to perform the same action on every pixel in an

image. The advantage is that you don't have to worry about horizontal and vertical coordinates with this
approach. Access to all of the pixels is provided in a one-dimensional array.

javadocs description of the getPixels method
The javadocs description of this method is shown in Figure 5 (p. ??) .
Returns: a one-dimensional array of Pixel objects starting with y=0 to y=height-1 and x=0 to

x=width-1.

http://cnx.org/content/m44203/1.3/

Connexions module: m44203 8

Returns: a one-dimensional array of Pixel objects starting with y=0 to y=height-1 and x=0 to
x=width-1.

Method to get a one-dimensional array of Pixels for this simple picture. Returns: a one-dimensional array of Pixel objects starting with y=0 to y=height-1 and x=0 to x=width-1.

Figure 5: javadocs description of the getPixels method.

What is a Pixel object?
An object of Ericson's Pixel class encapsulates an individual pixel from an image. Figure 6 (p. ??)

shows the javadocs description of the Pixel class.
A pixel has an x and y location in a picture.
A pixel knows how to get and set the red, green, blue, and alpha values in the picture.
A pixel also knows how to get and set the color using a Color object.

A pixel has an x and y location in a picture.
A pixel knows how to get and set the red, green, blue, and alpha values in the picture.
A pixel also knows how to get and set the color using a Color object.

Class that references a pixel in a picture. A pixel has an x and y location in a picture. A pixel knows how to get and set the red, green, blue, and alpha values in the picture. A pixel also knows how to get and set the color using a Color object.

Figure 6: javadocs description of the Pixel class.

Many methods available
The Pixel class de�nes a large number of methods. Once you have a reference to a Pixel object, you

can manipulate the underlying pixel encapsulated in that object in a variety of ways.
Get the pixels in the image
Recall that a reference to the Picture object that encapsulates our image is stored in the variable

named pic . (See Listing 2 (p. 6) .)
Listing 4 (p. 7) begins by calling the getPixels method on that reference.
All of the pixels in the image are returned in a one-dimensional array.
A reference to the array is stored in a local reference variable of type Pixel[] named pixelArray .
A for-each loop
A special kind of for loop (often called a for-each loop) is used to access and process each pixel in the

array. (A conventional for loop could also be used here.)
During each iteration of the loop...
The three statements inside the loop modify the color values of a single pixel.
The �rst two statements invert the red and green color values by subtracting the values from 255.
The third statement in the loop sets the blue color value to zero.

http://cnx.org/content/m44203/1.3/

Connexions module: m44203 9

When the loop terminates...
Every pixel in the image will have been modi�ed as described above.
Not a reversible process
Because the blue color values were set to zero, the image has now been modi�ed in an irreversible manner.
A reversible process
However, if the blue color values had also been inverted, the process would be reversible.
All that would be necessary to recover the original image would be to invert all of the pixels again.
An important process
Color inversion is a very important process in many areas of computing that involve images. The process

is:

• Computationally cheap
• Very fast
• Usually visually obvious
• Totally reversible

Often used to highlight selected images
For example, many software program invert all of the colors in an image when it is selected for some

purpose, such as copying to the clipboard. Then the colors are restored to their original values when the
image is deselected.

Next to redeye correction, color inversion is probably the most commonly used color modi�cation algo-
rithm in use in modern image processing.

Display again and terminate
The variable named pic still contains a reference to the original Picture object. However, the image

that is encapsulated in that object has been signi�cantly modi�ed.
Listing 5 (p. 9) calls the explore method again, creating and displaying another PictureExplorer

object that encapsulates a copy of the Picture object with the modi�ed image.

Listing 5: Display again and terminate.

pic.explore();

}//end run method

}//end class Prob02Runner

The result is shown in Figure 2 (p. 4) .
The end of the program
Listing 5 (p. 9) also signals the end of the run method and the end of the Prob02Runner class.
Return control to main
The run method terminates and returns control to the main method in Listing 1 (p. 5) .
The code in the main method calls a getter method to get a reference to the Picture object.
The reference is passed to the println method, which displays the information about the Picture

object in the last line of Figure 3 (p. 5) .
The program terminates
Then the main method terminates, at which time the program terminates and returns control to the

operating system.

4.1 Run the program

I encourage you to copy the code from Listing 6 (p. 11) , compile it and execute it. Experiment with the
code, making changes, and observing the results of your changes. Make certain that you can explain why
your changes behave as they do.

http://cnx.org/content/m44203/1.3/

Connexions module: m44203 10

You can download a copy of the raw image �le here 2 .

5 Summary

In this module, you learned how to invert images and how to display images in PictureExplorer objects.

6 What's next?

Y ou will learn how to implement a space-wise linear color-modi�cation algorithm in the next module.

7 Online video links

Select the following links to view online video lectures on the material in this module.

• ITSE 2321 Lecture 02 3

· Part01 4

· Part02 5

· Part03 6

· Part04 7

8 Miscellaneous

This section contains a variety of miscellaneous information.

note: Housekeeping material

• Module name: Java OOP: Image Processing Algorithms, Image Inversion, and PictureExplorer
Objects

• File: Java3004.htm
• Published: July 29, 2012
• Revised: November 14, 2012

note: Disclaimers: Financial : Although the Connexions site makes it possible for you to
download a PDF �le for this module at no charge, and also makes it possible for you to purchase a
pre-printed version of the PDF �le, you should be aware that some of the HTML elements in this
module may not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

2http://cnx.org/content/m44203/1.3/Prob02.jpg
3http://www.youtube.com/playlist?list=PL713DB9A1FF4B92DF
4http://www.youtube.com/watch?v=SVq_IN4TsTs
5http://www.youtube.com/watch?v=vcVLr8Z1mo4
6http://www.youtube.com/watch?v=M1Nns7vYTiM
7http://www.youtube.com/watch?v=Qw-yzEGuFJU

http://cnx.org/content/m44203/1.3/

Connexions module: m44203 11

9 Complete program listing

A complete listing of the program discussed in this module is shown in Listing 6 (p. 11) below.

Listing 6: Complete program listing.

/*File Prob02 Copyright 2008 R.G.Baldwin

***/

public class Prob02{//the driver class

public static void main(String[] args){

Prob02Runner obj = new Prob02Runner();

obj.run();

System.out.println(obj.getPicture());

}//end main

}//end class Prob02

//==//

class Prob02Runner{

private Picture pic = new Picture("Prob02.jpg");

public Prob02Runner(){//constructor

System.out.println("Dick Baldwin");

}//end constructor

//--//

//Accessor method

public Picture getPicture(){return pic;}

//--//

//This method is where the action is.

public void run(){

//Display the raw picture.

pic.addMessage("Dick Baldwin",10,20);

pic.explore();

//Set the blue color components to 0 and invert the

// red and green color components for every pixel in

// the picture.

Pixel[] pixelArray = pic.getPixels();

for(Pixel pixel:pixelArray){

pixel.setRed(255 - pixel.getRed());

pixel.setGreen(255 - pixel.getGreen());

pixel.setBlue(0);

}//end for loop

//Display the modified picture

pic.explore();

}//end run method

}//end class Prob02Runner

-end-

http://cnx.org/content/m44203/1.3/

