OpenStax-CNX module: m44214 1

JAVA3020: INTERFACES, OBJECT ARRAYS,
ETC.'

R.G. (Dick) Baldwin

This work is produced by OpenStax-CNX and licensed under the
Creative Commons Attribution License 3.0f

Abstract

Learn about interfaces, arrays of type Object, etc.

1 Table of Contents

e Preface (p. 1)
Viewing tip (p. 1)
* Figures (p. 2)
* Listings (p. 2)

Preview (p. 2)

General background information (p. 3)
Discussion and sample code (p. 4)
Run the program (p. 11)

Summary (p. 11)

What’s next? (p. 11)

Online video links (p. 11)
Miscellaneous (p. 12)

Complete program listing (p. 12)

2 Preface

This module is one of a series of modules designed to teach you about Object-Oriented Programming (OOP)
using Java.

2.1 Viewing tip

I recommend that you open another copy of this document in a separate browser window and use the
following links to easily find and view the figures and listings while you are reading about them.

*Version 1.4: Dec 12, 2012 6:28 am -0600
Thttp://creativecommons.org/licenses /by /3.0/

http://cnx.org/content/m44214/1.4/



OpenStax-CNX module: m44214 2

2.1.1 Figures
e Figure 1 (p. 3) . Command line output for Prob05.

2.1.2 Listings

Listing 1 (p. 4
Listing 2 (p. 4
Listing 3 (p. 5

(p- 4) . Beginning of driver class for Prob05.
(p. 4) . The interface named Prob05X.
(p- 5) . Beginning of the class named Prob05MyClassA.
Listing 4 (p. 6) . The method named getModifiedData.
Listing 5 (p. 6) . The method named getData.
Listing 6 (p. 6) . Overridden toString method.
Listing 7 (p. 7) . Beginning of the class named Prob05MyClassB.
Listing 8 (p. 7)
Listing 9 (p. 8)
8
9
1
1

. The method named getModifiedData.
. The getData and toString methods.
Listing 10 (p Print three items of information.
Listing 11 (p

Listing 12 (p
Listing 13 (p

. 9) . Three more print statements.
. 10) . Print the references to the two objects.
. 12) . Complete program listing

3 Preview

In this module, you will learn about :

Interface definitions

Implementing an interface in a class definition

Defining interface methods in a class definition

Storing references to new objects in elements of an array of type Object
Casting elements to an interface type in order to call interface methods
Parameterized constructors

Overridden toString method

Program specifications
Write a program named Prob05 that uses the class definition shown in Listing 1 (p. 4) to produce the
output shown in Figure 1 (p. 3) on the command line screen.

http://cnx.org/content/m44214/1.4/



OpenStax-CNX module: m44214

Command line output for Prob05.

Prob05
Put your first name here
Put your last name here

-18 -17 -16
-17 -17 -17
-12 -12 -12

Figure 1: Command line output for Prob05.

No graphic output images required

There are no graphic output images required by this program. Therefore, it can be compiled and executed

without a requirement to have Ericson’s media library on the classpath.
Required text output

The output, which appears on the command line screen, consists of the six lines of text shown in Figure

1(p-3).

Because the program generates random data for testing, the actual values will differ from one run to the

next. However, in all cases:

e The values in the first row of numbers will be a sequence of consecutive integers in increasing algebraic

order from left to right.

o All three values in the second row of numbers will match the value of the center number in the first

row of numbers.

e All three values in the third row of numbers will be algebraically five greater than the values in the

second row of numbers.

New classes

You may define new classes as necessary to cause your program to behave as required, but you may not

modify the class definition for the class named Prob05 shown in Listing 1 (p. 4) .

4 General background information

Among other things, this program illustrates:

Interface definitions

Implementing an interface in a class definition

Defining interface methods in a class definition

Storing references to new objects in elements of an array of type Object
Casting elements to an interface type in order to call interface methods
Parameterized constructors

Overridden toString method

http://cnx.org/content/m44214/1.4/



OpenStax-CNX module: m44214 4

5 Discussion and sample code

Will explain in fragments

I will explain this program in fragments. A complete listing of the program is provided in Listing 13 (p.
12) near the end of the module.

Beginning of driver class for Prob05

The driver class for Prob05 begins in Listing 1 (p. 4) .

Listing 1: Beginning of driver class for Prob05.

import java.util.*;

class Prob05{
public static void main(String[] args){

Random generator = new Random(new Date().getTime());
int randomData = (byte)generator.nextInt();

Object[] varl = new Object[2];

varl[0] = new ProbO5MyClassA(randomData) ;
var1[1] = new Prob0O5MyClassB(randomData) ;

Behavior of the code in Listing 1
Listing 1 (p. 4) does the following:

Gets and saves a random value of type int
Instantiates a new two-element array object of type Object . (A reference to any object of any
class or interface type can be stored in an array element of type Object .)

e Populates the array object with references to objects of the classes:

Prob05MyClassA
Prob05MyClassB

The same random value is passed to the constructor for both objects when they are instantiated.

Put the driver class on temporary hold

At this point, I am going to put the driver class named Prob05 on temporary hold and explain the
class named Prob05MyClassA

The interface named Prob05X

Having glanced ahead, I know that the class named Prob05MyClassA implements the interface
named Prob05X so I will explain that interface first.

The interface named Prob05X is shown in its entirety in Listing 2 (p. 4) .

Listing 2: The interface named Prob05X.

interface Prob05X{
public int getModifiedData();
public int getData();
}//end interface

An interface definition
An interface definition can contain only two kinds of members:

http://cnx.org/content/m44214/1.4/



OpenStax-CNX module: m44214 5

e Constants
e Method declarations

By now, you should have studied interfaces in my online tutorials. Therefore, this explanation will be very
brief.

Method declarations

Listing 2 (p. 4) contains two method declarations.

A method declaration does not have a body. Its purpose is to establish the programming interface for
that method in any class that implements the interface (return type, name, arguments, etc.)

A method declaration provides no information about the behavior of the method.

A method declaration in an interface is implicitly abstract.

A concrete definition is required

Any class that implements an interface:

e Must provide a concrete version of every method that is declared in the interface, or
e The class must be declared abstract . (In this case, abstract essentially means incomplete.)

The class named Prob05MyClassA
The class named Prob05MyClassA , which implements the interface named Prob05X | must
provide concrete versions of the methods named:

e public int getModifiedData()
e public int getData()

Beginning of the class named Prob05MyClassA
The class named Prob05MyClassA begins in Listing 3 (p. 5) .

Listing 3: Beginning of the class named Prob05MyClassA.

class ProbO5MyClassA implements Prob05X{
private int data;//instance variable

Prob05MyClassA(int inData){//constructor
System.out.println("Prob05") ;
System.out.println("Put your first name here");
data = inData;

}//end constructor

This class implements the interface named Prob05X

A private instance variable

Listing 3 (p. 5) begins by declaring a private instance variable of type int named data . As a private
instance variable, it is accessible by any method or constructor defined within the class but is not accessible
to methods from outside the class.

The constructor

The constructor for the class is shown in its entirety in Listing 3 (p. 5) .

The constructor begins by displaying the problem number and the student’s first name on the command
line screen.

Then it assigns the value of the incoming parameter named inData to the variable named data
This makes that value available to the methods that are defined within the class.

The method named getModifiedData

We learned earlier ! that the class named Prob05MyClassA

'http://cnx.org/content/m44214/1.4/Java30200ld.htm#concrete

http://cnx.org/content/m44214/1.4/



OpenStax-CNX module: m44214 6

e must provide a concrete definition of the method named getModifiedData |,
e because that method is declared in the interface named Prob05X ,
e which is implemented by the class.

With the exception of some very subtle differences (that are beyond the scope of this course) , that concrete
definition must match the signature of the declared method.
Code for the method named getModifiedData
The method named getModifiedData is shown in its entirety in Listing 4 (p. 6) .
When this method is called, it

e subtracts a value of 1 from the value stored in the instance variable named data , and
e returns that modified value.

Listing 4: The method named getModifiedData.

public int getModifiedData(){
return data - 1;
}//end getModifiedDatal()

The method named getData
We also learned earlier that the class named Prob05MyClassA

e must provide a concrete definition of the method named getData,
e which is also declared in the interface named Prob05X

Code for the method named getData
The method named getData is shown in its entirety in Listing 5 (p. 6) .
This method returns a copy of the value stored in the variable named data .

Listing 5: The method named getData.

public int getData(){
return data;
}//end getData()

A round trip
When the code in Listing 1 (p. 4) instantiates an object of the Prob05MyClassA class, it passes a
random value as a parameter to the constructor.
The constructor shown in Listing 3 (p. 5) stores that random value in the instance variable named data

When the method named getModifiedData is called, it returns a value that is the original random
value less 1.

When the method named getData is called, it returns a copy of the original random value.

The toString method

The class named Prob05MyClassA extends the class named Object by default. It inherits a method
named toString from the class named Object . The inherited method has very specific behavior.

Overridden toString method

The code in Listing 6 (p. 6) overrides the inherited method to provide a different behavior when the
method is executed in conjunction with an object of the Prob05MyClassA class.

The new behavior is to construct and return a string version of the value obtained by adding 5 to the
value stored in data , which is the original random value.

Listing 6: Overridden toString method.

http://cnx.org/content/m44214/1.4/



OpenStax-CNX module: m44214 7

public String toString(){
return "" + (data + 5);
}//end toString()

}//end class ProbO5MyClassA

The end of the class named Prob05MyClassA

Listing 6 (p. 6) also signals the end of the class definition for the class named Prob05MyClassA

The class named Prob05MyClassB

Referring back to the code in the driver class in Listing 1 (p. 4) , we see that the driver also instantiates
an object of the class named Prob05MyClassB |, passing the same random value to the constructor for
the class.

The reference to the object is stored in the second element of the array object of type Object referred
to by the reference variable named varl

Beginning of the class named Prob05MyClassB

The beginning of the class named Prob05MyClassB is shown in Listing 7 (p. 7) .

Listing 7: Beginning of the class named Prob05MyClassB.

class ProbO5MyClassB implements Prob05X{
private int data;

Prob05MyClassB(int inData){
System.out.println("Put your last name here");
data = inData;

}//end constructor

Implements Prob05X

The first thing we notice is that this class also implements the interface named Prob05X . This requires

that the class provide concrete definitions of the two methods declared in that interface.
Save the incoming parameter value

The constructor for the Prob05MyClassB class, which is shown in Listing 7 (p. 7) , saves the incoming
parameter value in a private instance variable named data .

Unrelated to the variable named data from before

It is important to note that this variable named data is completely unrelated to the private instance
variable named data that is declared in Listing 3 (p. 5) , even though they are the same type and they
have the same name.

They belong to two different objects. Objects do not share instance variables.

The two objects are related

However, even though the two objects instantiated in Listing 1 (p. 4) are instantiated from different
classes, they are related in the sense that they have two ancestors in common. They both extend the class
named Object by default and they both explicitly implement the interface named Prob05X . That
means that they can both be treated as either type Object or type Prob05X

Related through the interface by design

Because all classes are direct or indirect subclasses of the class named Object , all objects instantiated
for any class are related at the Object level. However, the objects in this program are related through the
Prob05X interface only because I designed the program that way.

The method named getModifiedData

The method named getModifiedData is shown in Listing 8 (p. 7) .

Listing 8: The method named getModifiedData.

http://cnx.org/content/m44214/1.4/



OpenStax-CNX module: m44214 8

public int getModifiedData(){
return data + 1;
}//end getModifiedData()

Same behavior is not required

A comparison of Listing 8 (p. 7) with Listing 4 (p. 6) exposes a very important aspect of interface
implementation.

If two different classes implement the same interface, they each must provide concrete definitions of all
the method declared in the interface. When providing such concrete definitions, both classes must match
the method signatures of the declared methods.

However, the behavior of a method as defined in one class is not required to be the same as the behavior
of the method having the same signature in the other class.

The behavior is different

For example, the code in Listing 4 (p. 6) subtracts 1 from the value of data and returns that modified
value.

The code in Listing 8 (p. 7) adds 1 to the value of data and returns that modified value.

Therefore, the behavior of the method named getModifiedData in an object instantiated from the
class named Prob05MyClassB is completely different from the behavior of the method having the same
signature in an object of the class named Prob05MyClassA

The getData and toString methods

Listing 9 (p. 8) shows the getData and toString methods as defined in the class named

Prob05MyClassB

Listing 9: The getData and toString methods.

public int getData(){
return data;
}//end getData()

public String toString(){
return "" + (data + 5);
}//end toString()

}//end class Prob0O5MyClassB

The behavior is the same
If you compare Listing 9 (p. 8) with Listing 5 (p. 6) and Listing 6 (p. 6) , you will see that these
two methods are defined the same in both classes. Therefore, these two methods have the same behavior
regardless of which of the two objects instantiated in Listing 1 (p. 4) they are called on.
Back to the driver class named Prob05
Returning now to the driver class named Prob05 where we left off in Listing 1 (p. 4) , Listing 10 (p.
8) contains three statements that print information on the command line screen.

Listing 10: Print three items of information.

System.out.print(
((Prob05X)var1[0]) .getModifiedData() + " ");

System.out.print(randomData + " ");

System.out.println(
((Prob05X)vari[1]) .getModifiedData());

http://cnx.org/content/m44214/1.4/



OpenStax-CNX module: m44214 9

Three print statements

The first two statements in Listing 10 (p. 8) call the print method and the last statement calls the
println method.

When the println method is called, the onscreen cursor advances to the left side of the next line after
the material has been printed.

However, when the print method is called, the cursor remains at the right end of the printed material.

Therefore, calling print print println in succession will cause three items of information to be printed
on the same line.

A cast is required

Recall that the reference to each object instantiated in Listing 1 (p. 4) is stored in an array element as
type Object

A reference to any object can be stored in a reference of type Object because the Object class is
the superclass of all classes. (References to array objects can also be stored as type Object but that fact
is not germane to this program.)

Only eleven methods can be called on type Object

However, once an object’s reference is stored as type Object , the only methods that can be called
on that object (without casting) are the eleven methods that are defined in the Object class. That
group of eleven methods includes the method named toString but it does not include the methods named
getData and getModifiedData

Must change the type of the reference

Therefore, the first statement in Listing 10 (p. 8) requires that a cast to be used to change the type of
the reference back to a type on which the method can be called. There are a couple of choices in this regard.

Could cast to the class type

First, it is always possible to cast the reference back to the class from which the object was instanti-
ated. Therefore, it would work to cast the reference from array element 0 in Listing 10 (p. 8) to type
Prob05MyClassA and to cast the reference from array element 1 to type Prob05MyClassB

Cast to the interface type

In this program, there is another choice. Because both classes implement the interface named Prob05X
, and the method named getModifiedData is declared in that interface, it also works to cast both
references to the common interface type Prob05X

That is what was done in Listing 10 (p. 8) . Both references were cast to the interface type Prob05X

The printed values

The first statement in Listing 10 (p. 8) calls the method named getModifiedData as defined in Listing
4 (p. 6) . This causes the original random value less 1 to be printed.

The second statement in Listing 10 (p. 8) simply prints the original random value that was saved in the
variable named randomData in Listing 1 (p. 4) .

The third statement in Listing 10 (p. 8) calls the method named getModifiedData as defined in
Listing 8 (p. 7) . This causes the original random value plus 1 to be printed.

Because this is a call to the println method, the onscreen cursor advances to the left side of the next
line after the value is printed.

The three statements in Listing 10 (p. 8) cause the first three values shown in Figure 1 (p. 3) to be
printed on the command line screen.

Three more print statements

Continuing with the driver class named Prob05 , Listing 11 (p. 9) shows three more print statements.

Listing 11: Three more print statements.

System.out.print (((Prob05X)var1[0]) .getData() + " ");
System.out.print(randomData + " ");

http://cnx.org/content/m44214/1.4/



OpenStax-CNX module: m44214 10

System.out.println(((Prob05X)vari[1]).getData());

A cast is required

In this case, the getData method belonging to each of the objects is called in the first and third
statements. (Once again a cast is required.)

Behavior of the getData methods is the same

Recall that the behavior of the getData method is the same in both objects. It simply returns a copy
of the original random value that was passed to the constructor when each of the objects was instantiated.

The three statements in Listing 11 (p. 9) produce the second set of three matching values shown in
Figure 1 (p. 3) .

These three values match because all three print statements are printing essentially the same value. The
original random value is printed in the middle statement in Listing 11 (p. 9) . A copy of the original random
value is printed in the first and third statements.

Print the references to the two objects
Things get a little bit more complicated in Listing 12 (p. 10) .

Listing 12: Print the references to the two objects.

System.out.print (((Prob05X)var1[0]) + " ");
System.out.print (randomData + 5 + " ");
System.out.println(((Prob05X)var1[1]));

}//end main
}//end class Prob05

An automatic call to the toString method
Whenever an object’s reference is passed to either the print method or the println method, the first
thing that happens is that the toString method is called on the reference. The toString method always
returns a reference to an object of the String class, and it is that string that is printed.
Inherited default behavior of the toString method
As T mentioned earlier, the toString method is defined with default behavior in the Object class.
Since every class is a subclass of the Object class, every class inherits that method.
If the toString method is not overridden in a class or in any of the superclasses of a given class and the
toString method is called on an object of the given class, the default behavior of the toString method
will occur.
Can override to change the behavior
However, any class can override the toString method to produce different behavior and can pass that
behavior down the inheritance hierarchy to subclasses of the class that overrides the method.
The toString method is overridden
In this program, the toString method is overridden in exactly the same way in both the Prob05MyClassB
class and the Prob05MyClassB class. (See Listing 6 (p. 6) and Listing 9 (p. 8) .) Therefore, when the
toString method is called on an object of either class, it will return a string representation of the value
stored in the variable named data plus 5.
Pass object references to the print and println methods
The first statement in Listing 12 (p. 10) passes the reference to the object stored in the first element of
the array to the print method and the third statement passes the reference to the object stored in the
second element of the array to the println method.
Execute overridden toString methods and print the returned values
The print and println methods cause the code in Listing 6 (p. 6) and Listing 9 (p. 8) to be executed.
In both cases, this code returns a string that represents the original random value plus 5. This is the value
that is displayed.

http://cnx.org/content/m44214/1.4/



OpenStax-CNX module: m44214 11

Print the random value plus 5

The second statement in Listing 12 (p. 10) adds five to the original random number and prints the
result. These three statements produce the third line of text in Figure 1 (p. 3) where all three values are
the algebraic sum of the original random number plus 5.

Important - The cast is not required

Even though the references extracted from the array in the first and third statements in Listing 12 (p.
10) are cast to the interface type Prob05X |, that cast is unnecessary.

Because the original definition of the toString method appears in the class named Object , the
toString method can be called on those objects even while they are being treated as though they are of
type Object

Runtime polymorphism

Furthermore, a very powerful capability of OOP known as runtime polymorphism would cause the over-
ridden versions of the methods defined in Listing 6 (p. 6) and Listing 9 (p. 8) to be executed instead of the
default version of the method defined in the Object class.

The end of the main method

Listing 12 (p. 10) signals the end of the main method and the end of the class named Prob05
When the main method has nothing further to do, it terminates causing the program to terminate and
return control to the operating system.

6 Run the program

I encourage you to copy the code from Listing 13 (p. 12) . Compile the code and execute it. Experiment
with the code, making changes, and observing the results of your changes. Make certain that you can explain
why your changes behave as they do.

7 Summary

In this module, you learned about :

Interface definitions

Implementing an interface in a class definition

Defining interface methods in a class definition

Storing references to new objects in elements of an array of type Object
Casting elements to an interface type in order to call interface methods
Parameterized constructors

Overridden toString method

8 What’s next?

You will learn how to scale images and how to rotate and translate images using the AffineTransform class
in the next module.

9 Online video links
Select the following links to view online video lectures on the material in this module.
e ITSE 2321 Lecture 10 2

Part01 3

2http://www.youtube.com/playlist?list=PL3DB0B7840C943C4C
3http://www.youtube.com/watch?v=10R_ Xgo9QEo

http://cnx.org/content/m44214/1.4/



OpenStax-CNX module: m44214

Part02 4
Part03 °
Part04 6

10 Miscellaneous

This section contains a variety of miscellaneous information.

NOTE: Housekeeping material

e Module name: Java OOP: Interfaces, Object Arrays, etc.
e File: Java3020.htm

e Published: August 2, 2012

e Revised: November 14, 2012

NOTE: Disclaimers: Financial : Although the Connexions site makes it possible for you to
download a PDF file for this module at no charge, and also makes it possible for you to purchase a
pre-printed version of the PDF file, you should be aware that some of the HTML elements in this
module may not translate well into PDF.

I also want you to know that, I receive no financial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

Affiliation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

11 Complete program listing
A complete listing of the program discussed in this module is shown in Listing 13 (p. 12) below.

Listing 13: Complete program listing.

/*File Prob05 Copyright 2008 R.G.Baldwin
3K R oK oK o K o ok o oK K oK K oK K o ko ok oK K o K ok K o ok ook oK K ok oK o ok o ok oK K ok K ok ko ok ok K ok ok ok /

import java.util.x;

class Prob05{
public static void main(String[] args){

Random generator = new Random(new Date().getTime());
int randomData = (byte)generator.nextInt();

4http://www.youtube.com/watch?v=vNPd6Sd7TWk8
Shttp://www.youtube.com/watch?v=_JFcPromgGk
Shttp://www.youtube.com/watch?v=A3bgpy5dCtQ

http://cnx.org/content/m44214/1.4/



Op

Y/
//

enStax-CNX module: m44214 13

Object[] varl = new Object[2];

varl[0] = new ProbO5MyClassA(randomData) ;
varl[1] = new ProbO5MyClassB(randomData) ;

System.out.print(

((Prob05X)var1[0]).getModifiedData() + " ");
System.out.print (randomData + " ");
System.out.println(

((Prob0O5X)var1[1]) .getModifiedData());

System.out.print (((Prob05X)var1[0]) .getData() + " ");
System.out.print(randomData + " ");
System.out.println(((Prob05X)var1[1]).getData());

System.out.print (((Prob05X)vari[0]) + " ");
System.out.print (randomData + 5 + " ");
System.out.println(((Prob05X)vari[1]));

}//end main
/end class Prob05

//

interface Prob05X{

Y/
//

cl

public int getModifiedData();
public int getData();
/end interface

//

ass Prob0O5MyClassA implements Prob05X{
private int data;

Prob05MyClassA (int inData){
System.out.println("Prob05");
System.out.println("Put your first name here");
data = inData;

}//end constructor

public int getModifiedData(){
return data - 1;
}//end getModifiedData()

public int getData(){
return data;
}//end getData()

public String toString(){
return "" + (data + 5);

http://cnx.org/content/m44214/1.4/



OpenStax-CNX module: m44214

}//end toString()
}//end class ProbO5MyClassA

//

class Prob05MyClassB implements Prob05X{
private int data;

Prob05MyClassB(int inData){
System.out.println("Put your last name here");
data = inData;

}//end constructor

public int getModifiedData(){
return data + 1;
}//end getModifiedData()

public int getData(){
return data;
}//end getData()

public String toString(){

return "" + (data + B);
}//end toString()

}//end class ProbO5MyClassB

-end-

http://cnx.org/content/m44214/1.4/

//

14



