

 [image: Java OOP: Cropping, Flipping, and Combining Pictures]

 Java OOP: Cropping, Flipping, and Combining Pictures
By: Richard Baldwin
Online: <http://cnx.org/content/m44238/1.3/>
This module is copyrighted by Richard Baldwin.
It is licensed under the Creative Commons Attribution License: http://creativecommons.org/licenses/by/3.0/
Module revised: 2012/11/14

Java OOP: Cropping, Flipping, and Combining Pictures
By: Richard Baldwin
Online: <http://cnx.org/content/m44238/1.3/>
This module is copyrighted by Richard Baldwin.
It is licensed under the Creative Commons Attribution License: http://creativecommons.org/licenses/by/3.0/
Module revised: 2012/11/14

Java OOP: Cropping, Flipping, and Combining Pictures

1.
Table of Contents

 	

Preface

	

 	

Viewing tip

 	

Figures

	

Listings

		

	

	

Preview

	

General background information

	

Discussion and sample code

	

Run the program

	

Summary

	

What's next?

	

Online video links

	

Miscellaneous

	

Complete program listing

2.

Preface

This module is one of a series of modules designed to teach you about Object-Oriented Programming (OOP) using Java.

The program described in this module requires the use of the Guzdial-Ericson
multimedia class library. You will find download, installation, and usage
instructions for the library at

Java OOP: The Guzdial-Ericson Multimedia Class Library

.

Viewing tip

I recommend that you open another copy of this document in a separate
browser window and use the following links to easily find and view the figures
and listings while you are reading about them.

Figures

 	

Figure 1

. Raw butterfly image.

	

Figure 2

. Beach scene with student's name added.

	

Figure 3

. Composite image.

	

Figure 4

. Required text output.

	

Figure 5

. Cropped and flipped version of the butterfly image.

	

Figure 6

. Partially complete version of the output picture.

Listings

 	

Listing 1

. The driver class named Prob02.

	

Listing 2

. Beginning of the Prob02Runner class.

	

Listing 3

. Beginning of the run method.

	

Listing 4

. Beginning of the cropAndFlip method.

	

Listing 5

. Process using nested loops.

	

Listing 6

. Call the copyPictureWithCrop method from the run method..

	

Listing 7

. Beginning of the method named copyPictureWithCrop.

	

Listing 8

. Process using nested loops.

	

Listing 9

. The remainder of the run method.

	

Listing 10

. Complete program listing.

3.

Preview

In this module, you will learn how to:

 	
Work directly with individual pixels and keep track of coordinate
	values.

	
Copy a portion of one picture into a specific location in another
	picture.

	
Crop and flip a picture.

Program specifications

Write a program named

Prob02

 that uses the class definition shown in

Listing 1

 and Ericson's media library along with the
image files named

Prob02a.jpg

 and

Prob02b.jpg

 to produce the three graphic output
images shown in

Figure 1

,

Figure2

, and

Figure 3

.

 [image: Missing image]

Figure 1.

Raw butterfly image.

Raw butterfly image.

 [image: Missing image]

Figure 2.

Beach scene with student's name added.

Beach scene with student's name added.

 [image: Missing image]

Figure 3.

Composite image.

Composite image.

May define new classes

You may define new classes as necessary to cause your program to behave as
required, but you may not modify the class definition for the class named

Prob02

 given in

Listing 1

.

The facing butterfly images

The two facing images of the butterflies in the final output picture are
separated by two pixels and those two images as a pair are centered in the
picture of the beach.

Required text output

In addition to the three output images mentioned above, your program must
display your name and the other three lines of text shown in

Figure 4

 on the
command-line screen:

	

							

 Display your name here.
Picture, filename Prob02a.jpg height 118 width 100
Picture, filename Prob02b.jpg height 240 width 320
Picture, filename None height 101 width 77

							

Figure 4.

Required text output.

Required text output.

4.

General background
information

This program copies a rectangular portion of a picture of a butterfly into a
specific location in a picture of a beach.

The program also crops the butterfly picture to the same size as the portion
that was copied into the beach picture and flips the cropped version to cause
the butterfly to face left instead of facing right.

Then it copies the cropped and flipped image to a location two pixels to the
right of the original copy of the butterfly in the beach image.

The two resulting images of the butterfly within the beach image are
separated by two pixels, face one another, and are centered in the picture of
the beach as shown in

Figure 3

.

Major evaluation areas

In order to successfully write this program, the student must, as a minimum
be able to:

 	
Work directly with individual pixels and keep track of coordinate
	values.

	
Copy a portion of one picture into a specific location in another
	picture.

	
Crop and flip a picture.

5.

Discussion and sample code

Will discuss in fragments

I will discuss this program in fragments. A complete listing of the
program is provided in

Listing 10

 near the end of the
module.

The driver class named Prob02

The driver class containing the

main

 method is shown in

Listing 1

.

Example 1.
 import java.awt.Color;

public class Prob02{
 public static void main(String[] args){
 Picture[] pictures = new Prob02Runner().run();

 System.out.println(pictures[0]);
 System.out.println(pictures[1]);
 System.out.println(pictures[2]);
 }//end main method
}//end class Prob02

A reference to an array object

The call to the

run

 method in

Listing 1

 may
be new to you. This call expects to receive a reference to an array object
of type

Picture[]

as a return value.

Save return value in variable named pictures

The return value from the

run

 method is stored in the local reference
variable named

pictures

.

Extract and print references to Picture objects

Then the reference variable is used to extract references to the individual

Picture

 objects encapsulated in the array. Those references are
passed to the

println

 method causing the last three lines of text shown
in

Figure 4

 to be displayed on the command line screen.

Beginning of the Prob02Runner class

The class named

Prob02Runner

 begins in

Listing 2

, which shows the
constructor for the class.

Example 2.
 class Prob02Runner{

 public Prob02Runner(){//constructor
 System.out.println("Display your name here.");
 }//end constructor

The constructor simply causes the student's name to be displayed on the
	command line screen, producing the first line of output text shown in
	

Figure 4

.

Beginning of the run method

The

run

 method, that was called in

Listing 1

 begins in

Listing 3

.

Example 3.
 public Picture[] run(){
 Picture picA = new Picture("Prob02a.jpg");
 picA.explore();

 Picture picB = new Picture("Prob02b.jpg");
 picB.addMessage("Display your name here.",10,20);
 picB.explore();

 Picture picC = cropAndFlip(picA,4,5,80,105);

Listing 3

 instantiates two

Picture

	objects from image files and displays them by calling the

explore

	method on each

Picture

 object. In addition, the student's name
	is added near the upper-left corner of the beach image. This code
	results in the images shown in

Figure 1

 and
	

Figure 2

.

Call the cropAndFlip method

Then

Listing 3

 calls the

cropAndFlip

 method
passing the reference to the butterfly image of Figure 1, along with some other
information as parameters. The return value is stored in a new local
reference variable of type

Picture

 named

picC

.

Put discussion of the run method on hold

I will put the discussion of the

run

 method on temporary hold at this
point and explain the method named

cropAndFlip

, which begins in

Listing 4

.

Beginning of the cropAndFlip method

The

cropAndFlip

method crops a picture to the specified coordinate
values and flips it around a vertical line at its center.

Example 4.

 private Picture cropAndFlip(Picture pic,
 int x1,int y1,
 int x2,int y2){
 Picture output = new Picture(x2-x1+1,y2-y1+1);

 int width = output.getWidth();

 Pixel pixel = null;
 Color color = null;

Incoming parameters

In addition to a reference to the picture to be processed, the method
receives four incoming integer values as parameters. The parameters named

x1

 and

y1

 specify the coordinates of the upper-left corner
of a rectangular area of the picture that is to be retained in the output.

The parameters named

x2

 and

y2

 specify the coordinates of the
lower-right corner of the rectangular area of the picture that is to be retained
in the output.

An empty Picture object

Listing 4

 begins by creating an empty

Picture

 object of the correct
size to hold the cropped image. A reference to the empty picture is saved
in the local reference variable named

output

.

Then

Listing 4

 gets and saves the width of the output
picture.

Following this,

Listing 4

 declares two local working variables named

pixel

(of type

Pixel

)

 and

color

(of type

Color

)

.

Process using nested loops

Listing 5

 uses a pair of nested

for

 loops to cause the output picture
to be a cropped version of the picture received as an incoming parameter.
The cropped image is flipped around its center.

Example 5.
 for(int col = x1;col < (x2+1);col++){
 for(int row = y1;row < (y2+1);row++){
 color = pic.getPixel(col,row).getColor();
 pixel = output.getPixel(width-col+x1-1,row-y1);
 pixel.setColor(color);
 }//end inner loop
 }//end outer loop

 return output;
 }//end cropAndFlip method

The code in

Listing 5

 copies the pixel colors of
	the selected pixels of the incoming image to the pixels of the output image,
	flipping the image around its center line in the process.

Cropped and flipped version of the butterfly image

If you display the picture referred to by

output

 in

Listing 5

,
you will get the image shown in

Figure 5

.

 [image: Missing image]

Figure 5.

Cropped and flipped version of the butterfly image.

Cropped and flipped version of the butterfly image.

Compare with the original butterfly picture

If you compare

Figure 5

 with

Figure 1

, you will see that pixels on the outer edges of

Figure 1

 have been discarded and the resulting image has been flipped around
its centerline.

End of the cropAndFlip method

Figure 5

 returns a reference to the new image and
ends the method named

cropAndFlip

. The returned value is stored in the variable named

picC

 in

Listing 3

.

Original image not modified

Note that the code in the

cropAndFlip

 method does not modify the
original image of the butterfly. Instead, it extracts pixel data from the
original image to produce a new image. When control returns to the

run

method in

Listing 3

, a reference to the new image is
stored in the variable named

picC

.

Call the copyPictureWithCrop method from the run method

Control has now returned to the

run

 method, picking up where

Listing 3

 left off. The next statement in the

run

 method is shown in

Listing 6

.

Example 6.
 copyPictureWithCrop(picA,picB,82,70,4,5,77,101);

Put the run method on hold again

Once again, I will put the

run

 method on hold while I explain the
method named

copyPictureWithCrop

, which begins in

Listing 7

.

Beginning of the method named copyPictureWithCrop

The first two incoming parameters named

source

 and

dest

 are
references to a source picture and a destination picture.

When the method is called in

Listing 6

, the source picture is the original
butterfly picture shown in

Figure 1

 and the destination picture is the beach
picture shown in

Figure 2

.

Example 7.
 private void copyPictureWithCrop(
 Picture source,
 Picture dest,
 int xOff,
 int yOff,
 int xCoor,
 int yCoor,
 int width,
 int height){

 //Confirm that source will fit in destination
 if(((width+xOff) <= dest.getWidth()) &&
 ((height+yOff) <= dest.getHeight())){

 Pixel pixel = null;
 Color color = null;

Copy source to destination

The method named

copyPictureWithCrop

copies part of the source picture
into the destination picture with an offset on both axes after first confirming
that the part will fit. The method does nothing if the part won't fit.

The copy process causes selected pixel colors in the destination picture to
be replaced by pixel colors from the source picture.

The offset values

The next two parameters named

xOff

 and

yOff

 in

Listing 7

 specify the location in the destination picture where the
upper-left corner of the cropped source picture is to be located.

The statement in

Listing 6

 passes the values (82,70)
for these two values. This is the location of the upper left corner of the
left-most butterfly image in

Figure 3

.

Not really cropped

For clarity, I will refer to this as a cropped source picture
				even though the program doesn't actually save a cropped version
				of the picture as was the case with the

cropAndFlip

				method.

The program simply copies a rectangular portion of the source
				picture into the destination picture.

Upper-left cropping corner

The parameters named

xCoor

 and

yCoor

 in

Listing 7

 specify the upper-left corner of the rectangular area of pixels
that is to be preserved when the source image is cropped.

Coordinate values of (4,5) are passed for these two values when the method is
called in

Listing 6

.

Same values as Listing 3

Note that these are the same two values that were passed for this purpose
when the

cropAndFlip

 method was called in

Listing 3

.

Two ways to specify a rectangle

There are two commonly used ways to specify a rectangular area in
programming. One way is to specify the coordinates of the upper-left and
bottom right corners. This is the approach used in the

cropAndFlip

method in

Listing 4

.

The other way is to specify the coordinates of the upper-left corner and then
to specify the width and the height. This is the approach used in the

copyPictureWithCrop

 method in

Listing 7

.

The width and height parameters

The parameters named

width

 and

height

 in

Listing 7

 specify the width and height of the rectangular area of pixels
that is to be preserved when the source picture is cropped.

If you compare the width and height parameter values passed in

Listing 6

 with the coordinate values passed in

Listing 3

, you will see that the same rectangular area
of the butterfly image is being preserved after cropping in both cases.

Confirm that the cropped image will fit

Listing 7

 begins by confirming that the cropped
rectangular area of the source picture will fit within the destination picture
when placed at the specified location. If the conditional clause of the

if

 statement
returns true, then the code in the body of the statement will be executed.
If not, control bypasses the body of the

if

 statement and the
source picture will not be copied into the destination picture.

Process using nested for loops

As was the case in

Listing 4

,

Listing 7

 declares two working variables named

pixel

 and

color

.

The variables named

pixel

 and

color

 are used along with various
parameter values in the pair of nested

for

 loops shown in

Listing 8

 to crop the source picture and to copy the
cropped source picture into the destination picture at the specified location.

Example 8.
 for(int col = 0;col < width;col++){
 for(int row = 0;row < height;row++){
 color = source.getPixel(
 col + xCoor,row + yCoor).getColor();
 pixel = dest.getPixel(col+xOff,row+yOff);
 pixel.setColor(color);
 }//end inner loop
 }//end outer loop

 }//end if

 }//end copyPictureWithCrop method

}//end class Prob02Runner

Not as complicated as it looks

Although the arithmetic operations involved in

Listing 8

 can be daunting, the code in

Listing 8

 is doing nothing more than replacing selected
pixel colors in the destination picture with selected pixel colors from the
source picture.

Partially complete version of the output picture.

If you were to display the destination picture before returning control back
to the

run

 method in

Listing 8

, you would see the image shown in

Figure 6

.

 [image: Missing image]

Figure 6.

Partially complete version of the output picture.

Partially complete version of the output picture.

At this point, only one cropped version of the butterfly image has been
copied into the beach image.

Return control to the run method

The

copyPictureWithCrop

 method terminates in

Listing 8

 and returns control to the

run

 method, picking up where

Listing
6

 left off.

The remainder of the run method

The remainder of the

run

 method is shown in

Listing 9

.

Example 9.
 copyPictureWithCrop(picC,picB,161,70,0,0,77,101);

 picB.explore();

 Picture[] output = {picA,picB,picC};
 return output;
 }//end run

Call the copyPictureWithCrop method again

Listing 9

 begins by calling the

copyPictureWithCrop

 method again.
This time, however, the picture shown in

Figure 5

 is
passed as the source image with the same picture as before being passed as the
destination image.

The offset coordinates

In this case, the offset coordinate values specify the upper-left corner of
the right-most butterfly image in

Figure 3

.

The cropping parameters

The final four parameters that are passed in

Listing 9

specify that the entire source picture is to be copied into the destination
picture.

Display the destination picture

When the

copyPictureWithCrop

 method returns,

Listing 9

 calls the

explore

 method to display the current state of
the destination picture. The result is shown in

Figure
3

.

A new array object

Finally,

Listing 9

 instantiates a new array object,
populates it with references to three

Picture

 objects, and returns control to the

main

method code in

Listing 1

 returning a reference to the
array object in the process.

The code in

Listing 1

 saves the reference to the
array object in the variable named

pictures

.

Pass Picture object references to println method

Then

Listing 1

 extracts and passes each of the three

Picture

 object
references to the

println

 method causing the last three lines of text
shown in

Figure 4

 to be displayed on the command-line
screen.

The second line of output text (

picA

) describes the raw butterfly
image shown in

Figure 1

.

The third line of output text for (

picB

) describes the beach scene
shown in

Figure 2

 and

Figure 3

.

The last line of output text (

picC

) describes the cropped and flipped
version of the butterfly image shown in

Figure 5

.

6.

Run the program

I encourage you to copy the code from

Listing 10

.
Compile the code and execute it. Experiment with the code, making changes, and
observing the results of your changes. Make certain that you can explain why
your changes behave as they do.

Click

here

 and

here

 to
download the two required input image files.

7.

Summary

In this module, you learned how to:

 	
Work directly with individual pixels and keep track of coordinate
	values.

	
Copy a portion of one picture into a specific location in another
	picture.

	
Crop and flip a picture.

8.

What's next?

You will l
earn to write a program to do
green-screen processing in the next module.

9.

Online video links

Select the following links to view online video lectures on the material in
this module.

 	

ITSE
	2321 Lecture 07

 	

Part01

	

Part02

	

Part03

	

10.

Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

 	
Module name: Java OOP: Cropping, Flipping, and Combining Pictures

	
File: Java3014.htm

	
Published: August 1, 2012

	
Revised: November 14, 2012

Disclaimers:

Financial

: Although the Connexions
site makes it possible for you to download a PDF file for this
module at no charge, and also makes it possible for you to
purchase a pre-printed version of the PDF file, you should be
aware that some of the HTML elements in this module may not translate well into
PDF.

I also want you to know that, I receive no financial compensation from the Connexions website even if you purchase
	the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle books, and
				placed them for sale on Amazon.com showing me as the author. I
				neither receive compensation for those sales nor do I know who does
				receive compensation. If you purchase such a book, please be
				aware that it is a copy of a module that is freely
				available on cnx.org and that it was made and published without
				my prior knowledge.

Affiliation

: I am a professor of Computer Information
	Technology at Austin Community College in Austin, TX.
	

11.

Complete program listing

A complete listing of the program discussed in this module is shown in

Listing 10

 below.

Example 10.
 /*File Prob02 Copyright 2008 R.G.Baldwin
Revised 12/16/08
***/
import java.awt.Color;

public class Prob02{
 public static void main(String[] args){
 Picture[] pictures = new Prob02Runner().run();

 System.out.println(pictures[0]);
 System.out.println(pictures[1]);
 System.out.println(pictures[2]);
 }//end main method
}//end class Prob02
//==//

class Prob02Runner{

 public Prob02Runner(){//constructor
 System.out.println("Display your name here.");
 }//end constructor
 //--//

 public Picture[] run(){
 Picture picA = new Picture("Prob02a.jpg");
 picA.explore();
 Picture picB = new Picture("Prob02b.jpg");
 picB.addMessage("Display your name here.",10,20);
 picB.explore();

 Picture picC = cropAndFlip(picA,4,5,80,105);

 copyPictureWithCrop(picA,picB,82,70,4,5,77,101);
 copyPictureWithCrop(picC,picB,161,70,0,0,77,101);

 picB.explore();

 Picture[] output = {picA,picB,picC};
 return output;
 }//end run
 //--//

 //Crops a picture to the specified coordinate values and
 // flips it around a vertical line at its center.
 private Picture cropAndFlip(Picture pic,int x1,int y1,
 int x2,int y2){
 Picture output = new Picture(x2-x1+1,y2-y1+1);

 int width = output.getWidth();
 Pixel pixel = null;
 Color color = null;
 for(int col = x1;col < (x2+1);col++){
 for(int row = y1;row < (y2+1);row++){
 color = pic.getPixel(col,row).getColor();
 pixel = output.getPixel(width-col+x1-1,row-y1);
 pixel.setColor(color);
 }//end inner loop
 }//end outer loop

 return output;
 }//end crop and flip
 //--//

 //Copies part of the source picture into the destination
 // picture with an offset on both axes after first
 // confirming that the part will fit. Does nothing if it
 // won't fit.
 private void copyPictureWithCrop(
 Picture source,Picture dest,int xOff,
 int yOff,
 int xCoor,
 int yCoor,
 int width,
 int height){

 //Confirm that source will fit in destination
 if(((width+xOff) <= dest.getWidth()) &&
 ((height+yOff) <= dest.getHeight())){
 Pixel pixel = null;
 Color color = null;
 for(int col = 0;col < width;col++){
 for(int row = 0;row < height;row++){
 color = source.getPixel(
 col + xCoor,row + yCoor).getColor();
 pixel = dest.getPixel(col+xOff,row+yOff);
 pixel.setColor(color);
 }//end inner loop
 }//end outer loop
 }//end if
 }//end copyPictureWithCrop method
}//end class Prob02Runner

-end-

content/image-e.jpg
Prob2b.

Zoom

x{ 4|0 | v 4o b

R:26:08: 1 Colorat iocation: [l

<= |

Ciickan

content/cover.png
Java OOP:
Cropping,
Flipping, and
Combining
Pictures

content/image-b.jpg
Zoom

<[¥ 4 3

R:2G:0B: 1 Coloratloc:

content/image-d.jpg

content/image-c.jpg
Zoom

JAl b4 Tk

content/image-a.jpg
-olx]

xﬂla | v 4o Iy

