

 [image: Java OOP: Clipping Images]

 Java OOP: Clipping Images
By: Richard Baldwin
Online: <http://cnx.org/content/m44246/1.3/>
This module is copyrighted by Richard Baldwin.
It is licensed under the Creative Commons Attribution License: http://creativecommons.org/licenses/by/3.0/
Module revised: 2012/11/14

Java OOP: Clipping Images
By: Richard Baldwin
Online: <http://cnx.org/content/m44246/1.3/>
This module is copyrighted by Richard Baldwin.
It is licensed under the Creative Commons Attribution License: http://creativecommons.org/licenses/by/3.0/
Module revised: 2012/11/14

Java OOP: Clipping Images

1.
Table of Contents

 	

Preface

	

 	

Viewing tip

 	

Figures

	

Listings

		

	

	

Preview

	

Discussion and sample code

	

Run the program

	

Summary

	

What's next?

	

Online video link

	

Miscellaneous

	

Complete program listing

2.

Preface

This module is one of a series of modules designed to teach you about Object-Oriented Programming (OOP) using Java.

The program described in this module requires the use of the Guzdial-Ericson
multimedia class library. You will find download, installation, and usage
instructions for the library at

Java OOP: The Guzdial-Ericson Multimedia Class Library

.

Viewing tip

I recommend that you open another copy of this document in a separate
browser window and use the following links to easily find and view the figures
and listings while you are reading about them.

Figures

 	

Figure 1

. Input file named Prob04a.jpg.

	

Figure 2

. First output image.

	

Figure 3

. Second output image.

	

Figure 4

. Required text output.

Listings

 	

Listing 1

. The driver class named Prob04.

	

Listing 2

. Beginning of the class named Prob04Runner.

	

Listing 3

. Clip the picture and display your name.

	

Listing 4

. The method named clipToEllipse.

	

Listing 5

. Complete program listing.

3.

Preview

In this module, you will learn how to use shapes to clip images during
	the drawing process.

Program specifications

Write a program named

Prob04

 that uses the class definition
shown in

Listing 1

 and Ericson's media library along
with the image file named

Prob04a.jpg

(see

Figure 1

)

 to
produce the graphic output images shown in

Figure 2

 and

Figure 3

. Don't forget to display your name in the
output image as shown.

 [image: Missing image]

Figure 1.

Input file named Prob04a.jpg.

Input file named Prob04a.jpg.

 [image: Missing image]

Figure 2.

First output image.

First output image.

 [image: Missing image]

Figure 3.

Second output image.

Second output image.

New classes

You may define new classes as necessary to cause your program to behave as
required, but you may not modify the class definition for the class named

Prob04

 shown in

Listing 1

.

Rotate, mirror, and clip

The program rotates a

Picture

 object by 35 degrees with no
scaling. Then it does a four-way mirror on the rotated picture. Finally, it
clips the image to an elliptical format as shown in

Figure 3

.

Required output text

In addition to the two output images shown above, your program must display
your name and the other line of text shown in

Figure 4

.

	

							

 Display your name here.
Picture, filename None height 404 width 425

							

Figure 4.

Required text output.

Required text output.

4.

Discussion and sample code

Will discuss in fragments

I will discuss and explain this program in fragments. A complete
listing of the program is provided in

Listing 5

 near
the end of the module.

The driver class named Prob04

The driver class containing the

main

 method is shown in

Listing 1

.

Example 1.
 public class Prob04{
 public static void main(String[] args){
 new Prob04Runner().run();
 }//end main method
}//end class Prob04

If you have been studying the earlier modules in this collection, no
	explanation of

Listing 1

 should be required.

Beginning of the class named Prob04Runner

The class named

Prob04Runner

 begins in

Listing 2

.

Example 2.
 class Prob04Runner{

 public Prob04Runner(){
 System.out.println("Display your name here.");
 }//end constructor
 //--//

 public void run(){
 Picture pix = new Picture("Prob04a.jpg");

 //Rotate and mirror the picture.
 pix = rotatePicture(pix,35);
 pix = mirrorUpperQuads(pix);
 pix = mirrorHoriz(pix);

 pix.explore();

Nothing new here

There is nothing new in

Listing 2

.

After instantiating a new

Picture

 object from the given
image file,

Listing 2

 calls three methods to rotate,
mirror, and display the picture, producing the graphic output shown in

Figure 2

.

All of the code to accomplish this is essentially the same as code that I
have explained in earlier modules.

Clip the picture and display your name

Then

Listing 3

 calls the

clipToEllipse

method to clip the picture to an ellipse on a red background as shown in

Figure 3

. The

clipToEllipse

 method is
new to this module, so I will explain it shortly.

Example 3.
 pix = clipToEllipse(pix);

 //Add your name and display the output picture.
 pix.addMessage("Display your name here.",10,20);
 pix.explore();

 System.out.println(pix);
 }//end run

The remaining code in

Listing 3

 is a repeat of
	code that I have explained in earlier modules, so I won't have anything
	further to say about it.

The method named clipToEllipse

The method named

clipToEllipse

 is shown in its entirety in

Listing 4

.

Example 4.
 private Picture clipToEllipse(Picture pix){
 Picture result =
 new Picture(pix.getWidth(),pix.getHeight());
 result.setAllPixelsToAColor(Color.RED);

 //Get the graphics2D object
 Graphics2D g2 = (Graphics2D)(result.getGraphics());

 //Create an ellipse for clipping
 Ellipse2D.Double ellipse =
 new Ellipse2D.Double(28,64,366,275);

 //Use the ellipse for clipping
 g2.setClip(ellipse);

 //Draw the image
 g2.drawImage(pix.getImage(),0,0,pix.getWidth(),
 pix.getHeight(),
 null);

 return result;
 }//end clipToEllipse

Behavior of the clipToEllipse method

The

clipToEllipse

 method receives an incoming parameter that
is a reference to an object of the

Picture

 class. Basically,
here is what the method does:

 	
Instantiate a

Picture

 object with an all white
	background that is the same size as the incoming

Picture

	object.

	
Call Ericson's

setAllPixelsToAColor

 method to convert
	the white background into a red background.

	
Call Ericson's

getGraphics

 method to get the

	Graphics

 object encapsulated in the red

Picture

	object.

	
Cast the

Graphics

 object's reference to type

	Graphics2D

.

	
Construct a new

Ellipse2D.Double

 object with the
	position, width, and height specified by the constructor parameters.

	
Call Sun's

setClip

 method to set the clipping area on
	the red

Picture

 object to match the position and shape of
	the ellipse.

	
Call Ericson's

getImage

 method to get the

Image

	object encapsulated in the incoming

Picture

 object.

	
Call Sun's

drawImage

 method to draw that portion of the
	incoming picture that fits inside the ellipse on the red

Picture

	object.

The new code

The only code in

Listing 4

 that is new to this
module is the call to the

setClip

 method.

The

setClip

 method is defined in the

Graphics

class and inherited into the

Graphics2D

 class.

(Among other things, that means that it wasn't
necessary for me to cast the

Graphics

 object to type

Graphics2D

 in

Listing 4

.)

The setClip method

There are a couple of overloaded versions of the

setClip

method. The one used in

Listing 4

 requires an incoming parameter of the
interface type

Shape

.

The Shape interface

Briefly, Sun tells us that the

Shape

 interface

"provides
definitions for objects that represent some form of geometric shape."

There are several dozen classes that implement the

Shape

interface, one of which is the class named

Ellipse2D.Double

.
Therefore, the object of that type that is instantiated in

Listing 4

 satisfies
the type requirement for being passed to the

setClip

 method.

Behavior of the setClip method

With regard to the behavior of the

setClip

 method, Sun tells
us that the method

"Sets the current clipping area to an arbitrary
clip shape."

What is the significance of the clipping area?

The closest answer that I can find for that question is the following
statement in Sun's description of the

Graphics

 class:

"All rendering operations modify only pixels
which lie within the area bounded by the current clip, which is specified by a

Shape

 in user space and is controlled by the program using the

Graphics

 object."

In other words...

The

clipping area

 is analogous to the

current clip

. In this
case, the position and shape of the current clip is the position and shape of
the ellipse.

When the image is later drawn on the red

Picture

 object,
only those pixels within the ellipse are modified to show the image. The
remaining pixels retain their original color, which was set to red early in

Listing 4

.

End of discussion

That concludes my explanation of this program. You will find the methods that
I didn't discuss in

Listing 5

 near the end of the module.

5.

Run the program

I encourage you to copy the code from

Listing 5

.
Compile the code and execute it. Experiment with the code, making changes, and
observing the results of your changes. Make certain that you can explain why
your changes behave as they do.

Click

Prob04a.jpg

 to download the required input
image file.

6.

Summary

In this module, you learned how to use shapes to clip images during the
drawing process.

7.

What's next?

In the next module, you will learn how to merge pictures.

8.

Online video link

Select the following link to view an online video lecture on the material in
this module.

 	

ITSE 2321 Lecture
	14

9.

Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

 	
Module name: Java OOP: Clipping Images

	
File: Java3028.htm

	
Published: August 6, 2012

	
Revised: November 14, 2012

Disclaimers:

Financial

: Although the Connexions
site makes it possible for you to download a PDF file for this
module at no charge, and also makes it possible for you to
purchase a pre-printed version of the PDF file, you should be
aware that some of the HTML elements in this module may not translate well into
PDF.

I also want you to know that, I receive no financial compensation from the Connexions website even if you purchase
	the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle books, and
				placed them for sale on Amazon.com showing me as the author. I
				neither receive compensation for those sales nor do I know who does
				receive compensation. If you purchase such a book, please be
				aware that it is a copy of a module that is freely
				available on cnx.org and that it was made and published without
				my prior knowledge.

Affiliation

: I am a professor of Computer Information
	Technology at Austin Community College in Austin, TX.
	

10.

Complete program listing

A complete listing of the program discussed in this module is provided in

Listing 5

 below.

Example 5.
 /*File Prob04 Copyright 2008 R.G.Baldwin
***/
import java.awt.Graphics2D;
import java.awt.geom.AffineTransform;
import java.awt.geom.Rectangle2D;
import java.awt.Graphics;
import java.awt.geom.Ellipse2D;
import java.awt.Color;

public class Prob04{
 public static void main(String[] args){
 new Prob04Runner().run();
 }//end main method
}//end class Prob04
//==//

class Prob04Runner{
 public Prob04Runner(){
 System.out.println("Display your name here.");
 }//end constructor
 //--//
 public void run(){
 Picture pix = new Picture("Prob04a.jpg");

 //Rotate and mirror the picture.
 pix = rotatePicture(pix,35);
 pix = mirrorUpperQuads(pix);
 pix = mirrorHoriz(pix);

 pix.explore();

 //Clip the picture to an ellipse on a red background.
 pix = clipToEllipse(pix);

 //Add your name and display the output picture.
 pix.addMessage("Display your name here.",10,20);
 pix.explore();

 System.out.println(pix);
 }//end run
 //--//

 private Picture clipToEllipse(Picture pix){
 Picture result =
 new Picture(pix.getWidth(),pix.getHeight());
 result.setAllPixelsToAColor(Color.RED);

 //Get the graphics2D object
 Graphics2D g2 = (Graphics2D)(result.getGraphics());

 //Create an ellipse for clipping
 Ellipse2D.Double ellipse =
 new Ellipse2D.Double(28,64,366,275);

 //Use the ellipse for clipping
 g2.setClip(ellipse);

 //Draw the image
 g2.drawImage(pix.getImage(),0,0,pix.getWidth(),
 pix.getHeight(),
 null);

 return result;
 }//end clipToEllipse
 //--//

 private Picture rotatePicture(Picture pix,
 double angle){

 //Set up the rotation transform
 AffineTransform rotateTransform =
 new AffineTransform();
 rotateTransform.rotate(Math.toRadians(angle),
 pix.getWidth()/2,
 pix.getHeight()/2);

 //Get the required dimensions of a rectangle that will
 // contain the rotated image.
 Rectangle2D rectangle2D =
 pix.getTransformEnclosingRect(rotateTransform);
 int resultWidth = (int)(rectangle2D.getWidth());
 int resultHeight = (int)(rectangle2D.getHeight());

 //Set up the translation transform that will translate
 // the rotated image to the center of the new Picture
 // object.
 AffineTransform translateTransform =
 new AffineTransform();
 translateTransform.translate(
 (resultWidth - pix.getWidth())/2,
 (resultHeight - pix.getHeight())/2);

 //Concatenate the two transforms so that the image
 // will first be rotated around its center and then
 // translated to the center of the new Picture object.
 translateTransform.concatenate(rotateTransform);
 //Create a new Picture object to contain the results
 // of the transformation.
 Picture result = new Picture(
 resultWidth,resultHeight);

 //Get the graphics context of the new Picture object,
 // apply the transform to the incoming picture and
 // draw the transformed picture on the new Picture
 // object.
 Graphics2D g2 = (Graphics2D)result.getGraphics();
 g2.drawImage(pix.getImage(),translateTransform,null);

 return result;
 }//end rotatePicture
 //--//

 //This method mirrors the upper-left quadrant of a
 // picture into the upper-right quadrant.
 private Picture mirrorUpperQuads(Picture pix){
 Pixel leftPixel = null;
 Pixel rightPixel = null;
 int midpoint = pix.getWidth()/2;
 int width = pix.getWidth();
 for(int row = 0;row < pix.getHeight()/2;row++){
 for(int col = 0;col < midpoint;col++){
 leftPixel = pix.getPixel(col,row);
 rightPixel =
 pix.getPixel(width-1-col,row);
 rightPixel.setColor(leftPixel.getColor());
 }//end inner loop
 }//end outer loop

 return pix;
 }//end mirrorUpperQuads
 //--//

 //This method mirrors the top half of a picture into
 // the bottom half.
 private Picture mirrorHoriz(Picture pix){
 Pixel topPixel = null;
 Pixel bottomPixel = null;
 int midpoint = pix.getHeight()/2;
 int height = pix.getHeight();
 for(int col = 0;col < pix.getWidth();col++){
 for(int row = 0;row < midpoint;row++){
 topPixel = pix.getPixel(col,row);
 bottomPixel =
 pix.getPixel(col,height-1-row);
 bottomPixel.setColor(topPixel.getColor());
 }//end inner loop
 }//end outer loop

 return pix;
 }//end mirrorHoriz
 //--//

}//end class Prob04Runner

-end-

content/cover.png
Java OOP:
Clipping Images

content/javaexam3.04c.jpg
xLﬂJn Iy v‘ 4|0

R: 255 G: 0 B: 0 Color at location:

content/javaexam3.04b.jpg
B None

Zoom

<o] v b

R: 255 G: 255 B: 255 Color at lacation;

content/javaexam3.04a.jpg

