

 [image: Overview of the MSP430 microcontroller from Texas instruments]

 Overview of the MSP430 microcontroller from Texas instruments

 MSP430 Microcontrollers

 MSP430 Microcontrollers (MCUs) from Texas Instruments are 16-bit, RISC-based, mixed-signal processors designed specifically for ultra-low-power. MSP430 MCUs have the right mix of analog and digital integrated intelligent peripherals, ease-of-use, low cost and lowest power consumption for thousands of applications ranging from simple sensor designs to complex electricity meters.
 To get a better idea of what MSP430 is and how it can be used to solve a system design need or application problem, let’s take a look at a typical block diagram for a device. Below is the device block diagram for the MSP430G2553, one of the MSP430 Value Line devices:
 [image: Figure (graphics1.png)]

Figure 1.

 Figure 1. MSP430G2553 Functional Block Diagram
 The purpose of the block diagram is to provide a high-level reference of the integration and feature set found in a given device. You can find the block diagram for any MSP430 in the device-specific datasheets at www.msp430.com.
 The block diagram contains key features of the device that can help designers quickly identify if an MSP430 is a fit for a given application need. A few features to be considered are listed here:
 	Integrated memory
 	Includes both volatile (RAM) and nonvolatile (Flash) sizes

	When multiple values are listed, it shows device memory size variants are available with same peripherals

	General purpose I/O pins
 	‘G2553 has up to 24 I/Os available: 8 Port1 (P1), 8 P2 and 8 P3 I/Os
 	Package dependent! Check the pinout for the total number

	All pins have configurable integrated pull-up or pull-down resistors

	P1 and P2 I/Os when inputs can provide an interrupt to the CPU

	CPU and emulation capabilities
 	16MHz is the maximum CPU clock speed for the ‘G2553

	Integrated emulation for the ‘G2553 has 2 hardware breakpoints (2BP) for use when debugging

	Simplified clock system
 	One external clock source on XIN/XOUT can be sourced

	The internal clock tree provides three clock tree branches

	Digital and analog peripheral mix, the ‘G2553 device includes
 	ADC: 10-bit, 8 channel analog-to-digital converter with internal voltage reference for voltage measurement (sensors, power rails, etc)

	Comp_A+: 8 channel analog comparator with internal voltage reference for simple measurements or voltage threshold detection

	WDT+: Watchdog timer for resetting the CPU in case of timeout (can also be used as a simple interval timer generating an interrupt)

	Timer0,1_A3: Two 16-bit general purpose timers, each with 3 capture-compare (CC) I/Os

	USCI (A0/B0): Universal serial communication interface module capable of providing standard UART, SPI and I2C communication protocols used to interface with external digital devices (sensors, data converters, radio ICs, etc)

 Figure 2 is the corresponding pinout also found in each device datasheet for the ‘G2553. Here you can see exactly how peripheral functions are mapped onto the multiplexed I/Os of the device. Each I/O pin can be configured in user software to provide the desired pin function for a given I/O based on its internal connectivity.
 [image: Figure (graphics2.png)]

Figure 2.

 Figure 2. MSP430G2553 20-pin package device pinout
 Shown in the figure are the necessary power supply connections (DVCC, DVSS), programmer/debugging tool connections (SBWTCK, SBWTDIO, etc) and general I/O & peripheral connections (e.g. P3.1, TA1.0, CA2, UCB0SDA, etc). When beginning any design with the MSP430, a review of the given device’s block diagram and package pinout can provide a great guide to what is possible as well as any constraints a given device may have such as memory size or pinout limitations, etc.
 Connecting the MSP430 in any system is in most cases very straightforward. The first consideration should be the power supply requirements. Most MSP430 devices operate at 1.8V to 3.6V so a typical 3V supply will work great. Connecting JTAG to support device memory programming and debug is also important. For the ‘G2xxx devices there are two possibilities: a) standard 4-wire JTAG or b) MSP430-specific Spy-Bi-Wire (SBW, or 2-wire JTAG). Both interfaces are acceptable for programming and debugging application code. The main advantage of 4-wire mode is speed and the main advantage of 2-wire (SBW) mode is reduced pin connection requirements.
 Figure 3 shows these baseline connections for the ‘G2553 as well as some examples of other connections that can be made to the I/Os and integrated peripherals.
 [image: Figure (graphics3.png)]

Figure 3.

 Figure 3. Example schematic with system connections to the ‘G2553
 The example system shows connections of the ‘G2553 in a typical sensor interface application. In this example, the ‘G2553 integrated ADC10 is used to measure an analog signal via a thermistor that changes resistance as temperature increases or decreases and also interfaces using an I2C bus from the USCI module to an external humidity sensor. In addition, a 32.768kHz watch crystal is used to keep accurate timing and two switches along with one PWM-controlled LED provide a simple user interface. To save power from the 3V coin cell battery, when not used the humidity sensor and thermistor ladder can be powered off using a general purpose I/O (P2.5) and the internal voltage reference (VREF+), respectively.
 Now that we have covered the basics and how to understand the capabilities of a given MSP430 device, let’s look more closely at the documentation and how to use it most effectively. MSP430 device documentation can be broken up into 3 main categories:
 	Device-specific Datasheet (ex: MSP430G2553 datasheet)

 Here you will find anything device specific: pinouts, block diagrams, absolute operating conditions (supply voltage & operating temperature ranges), electrical parameters and performance tolerances (e.g. power consumption, ADC accuracy, internal clock minimum and maximum frequencies, etc.)
 	Device Family User’s Guide (ex: MSP430x2xx Family User's Guide)

 This document contains all information applicable across all devices in the family: peripheral detailed descriptions, register and bit function definitions, CPU and instruction set, power mode definitions and settings. Note some peripherals included in the User’s Guide will not be present in a given device as it is intended to cover all peripherals within a given family.
 	Device-specific erratasheet (ex: MSP430G2553 Device Erratasheet)

 The erratasheet is a critical document that lists any device bugs that can affect a given use-case along with potential workarounds. Errata can vary with device as well as device revisions.
 The info above as well as additional reference material such as application notes, example code and development tool documentation for a given device can be found at TI.com by navigating to the device-specific product folder (ex: MSP430G2553 Product Folder). Here you can find latest information as well as links to all pertinent documentation and software to aid your design efforts.
 Arguably the most valuable document is the device-specific datasheet. We have already looked at two core aspects (pinout & block diagram) but let’s dive a bit deeper into the information provided. The front page of the datasheet is designed to highlight all the key aspects of the device in a bulleted fashion. It is comprehensive, showing typical power consumption, clock system capabilities peripheral mix and package options.
 [image: Figure (graphics4.png)]

Figure 4.

 Figure 4. Device-specific datasheet front page
 This information is a great start but is targeted as more of a marketing message than a reference for a designer. Going beyond the first page is critical to fully assess the given device’s capabilities and its limitations. Looking beyond the first page begins to yield the information needed to really design a system with the MSP430. This begins with the available options for the device and variants. For example, there are 40 device and orderable part number variants for the ‘G2553 device. These variants provide different mix of flash or RAM, peripherals available, number of I/Os supported and package options such as DIP or surface mount options.
 While all information in a datasheet should be considered as important, here are some highlighted areas to focus on when reviewing the datasheet for a specific MSP430 MCU:
 	Supported interrupt sources, corresponding flags & priority:

 [image: Figure (graphics5.png)]

Figure 5.

 	Calibration data such as internal clock defaults & ADC offset/gain settings:

 [image: Figure (graphics6.png)]

Figure 6.

 	Timer functions & pinouts for each capture-compare I/O:

 [image: Figure (graphics7.png)]

Figure 7.

 	Absolute Maximum Ratings and Recommended Operating Conditions including voltage and temperature as well as CPU clock speeds vs Vcc:

 [image: Figure (graphics8.png)]

Figure 8.

 	Performance specifications for power consumption, analog accuracy, clock tolerances, etc (current consumption and ADC performance excerpts shown):

 [image: Figure (graphics9.png)]

Figure 9.

 	Port schematics & Pin Function tables which detail exactly how to select a given multiplexed function on a given pin using the I/O control registers:

 [image: Figure (graphics10.png)]

Figure 10.

 	Package information providing package tolerances useful when creating device footprints in schematic/PCB CAD tools:

 [image: Figure (graphics11.png)]

Figure 11.

 Now that we have reviewed the MSP430 device documentation and where to find the needed information about what a device can do, let’s walk through the process of actually selecting the part that best suits a given design need.
 Let’s start by answering the questions below:
 	“What problem am I trying to solve?”

 This is fundamental. Until this is understood, nothing else can happen. Knowing what the problem is you face at a system level allows you to identify how features of the MCU can help you solve the problem most efficiently.
 	Do analog signals need to be measured, for instance a voltage from a strain gauge or an output from a potentiometer? If so, perhaps an integrated ADC is of value. If a simple analog threshold is needed, an integrated comparator can likely do the trick.

	What is the user interface? Switches likely translate into simple digital interrupt inputs while displays may require a communication bus such as SPI to be used in order to refresh data displayed to the user.

	Are time-sensitive signals needed off-chip? For example perhaps a PWM signal is needed to control a motor’s speed or LED brightness.

	What are the other devices or circuits that the MCU needs to interface with? Identifying potential analog inputs, logic level digital I/O signals or communication interfaces such as I2C or UART will all help find the right MCU to fit the application need.

 	“How many “things” need to be input into the device or driven from the device (outputs)?”

 Determining this at a block level for the system and then at a more detailed MCU pinout level will clarify exactly how many I/O pins are needed
 	“What are my power supply requirements/limitations?”

 This is important as the needed of the MCU supply may impact the overall system design. For example if powered from a 9V battery, the MSP430 will need a regulator to bring its supply to within the 1.8V-3.6V range.
 	“How much memory will my application need?”

 This is not always obvious as the SW may not yet be written. But if you plan on using existing code or modifying code already written, you can get an idea of what a given function in SW might require in terms of program and data memory needs. And when certain algorithms such as FFT or filtering are needed, RAM requirements can often be estimated before ever selecting the device by simulating the functions on a PC.
 	“Are any ‘special’ features needed?”

 For example is a USB interface to a PC needed? Or perhaps a high resolution ADC (>12-bits) is needed to get a certain system performance. Consider looking for MCUs that offer such features integrated to minimize the system-level design effort and complexity required.
 	“Do I have any physical design or assembly constraints? (e.g. package size, pin spacing, PCB or assembly capability)”

 Often the box the final system must fit into is a factor. This can have big implications on package requirements, pin count limits and PCB design complexity/cost. Also consider testing a final system- the more dense a design or package is with respect to PCB routing the more challenging it is to assemble and debug- DIP are easiest with BGA being quite challenging.
 There are numerous devices available in the MSP430 family portfolio to meet the given system requirements the above 6 points uncover. A few are listed below with their own unique feature sets. A key driver in listing these specific parts is their ease of use- they are available in DIP packages and are supported by a flexible and scalable development tool that can accelerate prototyping of a given application.

 [image: Figure (graphics12.png)]
Figure 12.

 Each of the devices can be used with the MSP430 Launchpad to provide an easy, intuitive and out-of-the-box development experience:
 [image: Figure (graphics13.png)]

Figure 13.

 Solving any design challenge starts first with an understanding of the problem and any constraints that the system may have. Once a clear picture of the problem needing to be solved is established, finding the ideal way to solve the problem using an MCU can be straightforward if the capabilities that MCU offers are understood. Being able to navigate the MSP430 family, its feature set and the available devices and development tools to get started are keys to success in meeting such a system design challenge. Happy coding!

