
Connexions module: m44911 1

Java OOP: Using Alpha Transparency

with Ericson's Media Library
∗

Richard Baldwin

This work is produced by The Connexions Project and licensed under the

Creative Commons Attribution License †

Abstract

Learn how to use alpha transparency with Ericson's media library.

1 Table of Contents

• Preface (p. 1)

· Viewing tip (p. 1)

* Figures (p. 2)
* Listings (p. 2)

• Preview (p. 2)
• General background information (p. 6)
• Discussion and sample code (p. 7)
• Run the program (p. 11)
• Summary (p. 11)
• What's next? (p. 12)
• Miscellaneous (p. 12)
• Complete program listing (p. 12)

2 Preface

This module is one of a series of modules designed to teach you about Object-Oriented Programming (OOP)
using Java.

The program described in this module requires the use of the Guzdial-Ericson multimedia class library.
You will �nd download, installation, and usage instructions for the library at Java OOP: The Guzdial-Ericson
Multimedia Class Library 1 .

2.1 Viewing tip

I recommend that you open another copy of this document in a separate browser window and use the
following links to easily �nd and view the �gures and listings while you are reading about them.

∗Version 1.1: Sep 5, 2012 11:28 am -0500
†http://creativecommons.org/licenses/by/3.0/
1http://cnx.org/content/m44148/latest/

http://cnx.org/content/m44911/1.1/

Connexions module: m44911 2

2.1.1 Figures

• Figure 1 (p. 3) . Image from �le named Prob06a.
• Figure 2 (p. 4) . Image from �le named Prob06b.
• Figure 3 (p. 5) . Processed output image.
• Figure 4 (p. 6) . Required text output.

2.1.2 Listings

• Listing 1 (p. 6) . Modi�cation of the SimplePicture class.
• Listing 2 (p. 8) . Beginning of the class named Prob06Runner.
• Listing 3 (p. 8) . The run method.
• Listing 4 (p. 8) . Beginning of the cropAndFlip method.
• Listing 5 (p. 9) . Make the pixels partially transparent.
• Listing 6 (p. 10) . The copyPictureWithCrop method.
• Listing 7 (p. 12) . Complete program listing.

3 Preview

The primary objective of this module is to incorporate alpha transparency into the use of Ericson's media
library.

Two approaches
There are at least two ways to incorporate alpha transparency into Ericson's media library, The easiest

way, which is not necessarily the best way, is to make a relatively simple modi�cation to a constructor in
Ericson's SimplePicture class. That is the approach used in this module.

The second approach
The second approach is more complicated, but does not require the modi�cation of the classes in Ericson's

library. That is probably a better approach due simply to the fact that modi�cations to Ericson's library
are not required. However, that approach is not shown in this module.

Outside research
This program may require a signi�cant amount of outside research on the part of the student in order to

learn about:

• Alpha transparency
• A bu�ered image of type TYPE_INT_ARGB
• The ability to use Ericson's getBasicPixel and setBasicPixel methods,
• The use of the bitwise AND and OR operators, and
• The use of the drawImage method of the Graphics class.

The getBasicPixel and setBasicPixel methods
The program uses the getBasicPixel and setBasicPixel methods from Ericson's library along with

bitwise operations to set the alpha value for all the pixels in a cropped and �ipped image of a butter�y to a
hexadecimal value of 5F.

Modi�cation to the SimplePicture class
The student must modify the SimplePicture class to cause the bu�ered image used to store the image

to be TYPE_INT_ARGB instead of TYPE_INT_RGB , which is its normal type.
Crop, �ip, and set alpha values
Then the student must write a method that will crop and �ip an image of a butter�y and set the value

of every alpha byte to a hexadecimal value of 5F.
Draw a partially transparent image of a butter�y

http://cnx.org/content/m44911/1.1/

Connexions module: m44911 3

Finally, the student must use the standard drawImage method of the Graphics class to draw the
image of the butter�y onto an image of a beach with transparency.

Brief program speci�cations
Write a program named Prob06 that uses the class de�nition for the class named Prob06 in Listing

7 (p. 12) along with Ericson's media library and the image �les named Prob06a.jpg 2 and Prob06b.jpg
3 to produce the three graphic output images shown in Figure 1 (p. 3) , Figure 2 (p. 4) , and Figure 3 (p.
5) .

Image from �le named Prob06a.

Figure 1: Image from �le named Prob06a.

2http://cnx.org/content/m44911/latest/Prob06a.jpg
3http://cnx.org/content/m44911/latest/Prob06b.jpg

http://cnx.org/content/m44911/1.1/

Connexions module: m44911 4

Image from �le named Prob06b.

Figure 2: Image from �le named Prob06b.

http://cnx.org/content/m44911/1.1/

Connexions module: m44911 5

Processed output image.

Figure 3: Processed output image.

De�ne new classes
You may de�ne new classes as necessary to cause your program to behave as required, but you may not

modify the class de�nition for the class named Prob06 given in Listing 7 (p. 12) .
A partially transparent image of a butter�y
Just in case you haven't noticed it, the �nal image of the beach contains a partially transparent image

of a butter�y superimposed and centered on the beach image.
Modi�cation to the SimplePicture class
In order to write this program, you will need to modify the class from Ericson's media library named

SimplePicture .
Your modi�cations must make it possible for you to display a partially transparent image on top of

another image with the background image showing through.
Transparency
The degree of transparency can range from being completely transparent at one extreme to being totally

opaque at the other extreme. In this case, the butter�y image shown in Figure 3 (p. 5) is about 37-percent
opaque (or 63-percent transparent) .

Outside research
You will probably need to do some outside research in order to write this program. For example, you

will need to learn about the following topics and probably some other topics as well:

• Alpha transparency

http://cnx.org/content/m44911/1.1/

Connexions module: m44911 6

• Bu�eredImage objects of TYPE_INT_ARGB
• The representation of a pixel as type int
• Bit manipulation of pixels
• The drawImage method of the Graphics class

Required text output
In addition to the output images described above, your program must produce the text output shown in

Figure 4 (p. 6) on the command- line screen.

Required text output.

Dick Baldwin.

Dick Baldwin

Picture, filename Prob06a.jpg height 118 width 100

Picture, filename Prob06b.jpg height 240 width 320

Picture, filename None height 101 width 77

Figure 4: Required text output.

You must substitute your name for my name wherever my name appears both in the images and on the
command-line screen.

4 General background information

The image in a SimplePicture object is stored in an object of the Bu�eredImage class, which is a
class in the standard Sun Java library.

Image data formats
An examination of the documentation for the Bu�eredImage class shows that the red, green, blue,

and alpha values for each pixel can be formatted in about fourteen di�erent ways in an object of the
Bu�eredImage class.

No alpha data
Some of those formats, including the way that information is stored in a SimplePicture object, don't

include an alpha value.
Modi�cation of the SimplePicture class
One way to modify the SimplePicture class to force it to accommodate alpha transparency data

is to modify one of the constructors for the SimplePicture class as shown in Listing 1 (p. 6) . Note
that Bu�eredImage.TYPE_INT_RGB was replaced by Bu�eredImage.TYPE_INT_ARGB
in Listing 1. (There are probably other ways that you can modify the class to achieve the same result as
well.)

Listing 1: Modi�cation of the SimplePicture class.

http://cnx.org/content/m44911/1.1/

Connexions module: m44911 7

/**

* A constructor that takes the width and height desired

* for a picture and creates a buffered image of that

* size. This constructor doesn't show the picture.

*/

public SimplePicture(int width, int height){

//Disable the following statement

// bufferedImage = new BufferedImage(

// width, height, BufferedImage.TYPE_INT_RGB);

//Modify constructor to support alpha transparency.

System.out.println("Dick Baldwin");

bufferedImage = new BufferedImage(

width, height, BufferedImage.TYPE_INT_ARGB);

title = "None";

fileName = "None";

extension = "jpg";

setAllPixelsToAColor(Color.white);

}//end constructor

Future Picture objects will accommodate alpha transparency
Having made this modi�cation, future objects instantiated from the SimplePicture class using this

constructor will accommodate alpha transparency. (The SimplePicture class is the superclass of the
Picture class.)

Display the student's name
Note that the constructor in Listing 1 (p. 6) is also modi�ed to cause it to display the student's name,

which is a requirement of the program.
No complete listing of SimplePicture provided
Because of the simplicity of this modi�cation, a complete listing of the modi�ed SimplePicture class

will not be provided in this module.

5 Discussion and sample code

5.1 The class named Prob06

You can view the driver class named Prob06 at the beginning of the source code in Listing 7 (p. 12) .
You are already familiar with the code in the main method of that class from earlier modules so I won't
spend any time explaining it.

Brie�y, the main method instantiates a new object of the class named Prob06Runner and calls the
run method on that object. When the run method returns, the code in the main method displays
some information about the three images and terminates.

(Because there are images on the screen, the program does not actually terminate until the user forces
it to terminate.)

5.2 The class named Prob06Runner

Will explain in fragments
I will explain this program in fragments. A complete listing of the program is provided in Listing 7 (p.

12) near the end of the module
The class named Prob06Runner begins in Listing 2 (p. 8) , which shows the constructor for the class.

http://cnx.org/content/m44911/1.1/

Connexions module: m44911 8

Listing 2: Beginning of the class named Prob06Runner.

class Prob06Runner{

public Prob06Runner(){//constructor

System.out.println("Dick Baldwin.");

}//end constructor

The constructor simply displays the student's name to satisfy one of the requirements of the program.
The run method
The run method, which is called from the main method in Listing 7 (p. 12) , is shown in its entirety

in Listing 3 (p. 8) .

Listing 3: The run method.

public Picture[] run(){

//Insert executable code here

Picture picA = new Picture("Prob06a.jpg");

picA.explore();

Picture picB = new Picture("Prob06b.jpg");

picB.addMessage("Dick Baldwin.",10,20);

picB.explore();

Picture picC = cropAndFlip(picA,4,5,80,105);

copyPictureWithCrop(picC,picB,122,70);

picB.show();

Picture[] output = {picA,picB,picC};

return output;

}//end run

New material
The only thing in Listing 3 (p. 8) that is new to this module is the pair of calls to the following methods.

I will explain these methods in the paragraphs that follow:

• cropAndFlip
• copyPictureWithCrop

Beginning of the cropAndFlip method
The cropAndFlip method begins in Listing 4 (p. 8) . This method receives an incoming reference to

a Picture object. It crops the picture to a set of speci�ed coordinate values and �ips it around a vertical
line at its center.

Listing 4: Beginning of the cropAndFlip method.

private Picture cropAndFlip(

Picture pic,int x1,int y1,int x2,int y2){

Picture output = new Picture(x2-x1+1,y2-y1+1);

http://cnx.org/content/m44911/1.1/

Connexions module: m44911 9

int width = output.getWidth();

Pixel pixel = null;

Color color = null;

for(int col = x1;col < (x2+1);col++){

for(int row = y1;row < (y2+1);row++){

color = pic.getPixel(col,row).getColor();

pixel = output.getPixel(width-col+x1-1,row-y1);

pixel.setColor(color);

}//end inner loop

}//end outer loop

Receives a reference to the butter�y image
Note from Listing 3 (p. 8) that the cropAndFlip method receives a reference to the Picture object

of the butter�y that is displayed in Figure 1 (p. 3) .
Also note that the butter�y in Figure 1 (p. 3) is facing toward the right while the butter�y in the output

image in Figure 3 (p. 5) has been cropped to a smaller size and is facing toward the left.
Crop and �ip is not new
The capability to crop and �ip an image is not new to this module. However, the cropAndFlip method

also makes the image partially transparent as shown in Figure 3 (p. 5) . That capability is new to this
module. I will explain how that is done shortly.

A call to the modi�ed SimplePicture constructor
Although there is nothing new in the code in Listing 4 (p. 8) , it is important to note that the �rst

statement in Listing 4 (p. 8) causes the SimplePicture constructor that was modi�ed in Listing 1 (p. 6)
to be called.

As a result, the Picture object referred to by the reference variable named output in Listing 4 (p.
8) will accommodate alpha transparency data.

Make the pixels partially transparent
The code in Listing 5 (p. 9) uses a pair of nested for loops to iterate through all of the pixels in the

picture referred to by output and modify each pixel.
The four statements in the body of the inner loop in Listing 5 (p. 9) cause the current pixel to become

partially transparent.

Listing 5: Make the pixels partially transparent.

width = output.getWidth();

int height = output.getHeight();

pixel = null;

color = null;

for(int col = 0;col < width;col++){

for(int row = 0;row < height;row++){

int basicPixel = output.getBasicPixel(col,row);

basicPixel = basicPixel & 0x00FFFFFF;

basicPixel = basicPixel | 0x5F000000;

output.setBasicPixel(col,row,basicPixel);

}//end inner loop

}//end outer loop

http://cnx.org/content/m44911/1.1/

Connexions module: m44911 10

return output;

}//end crop and flip

The getBasicPixel method
According to Ericson's documentation, the getBasicPixel method will "return the pixel value as an

int for the given x and y location." In other words, a call to the getBasicPixel method will return an
int value containing the red, green, blue, and alpha values for the pixel at the speci�ed location.

A bitwise AND operation
Listing 5 (p. 9) uses a bitwise AND operation (note the single ampersand) to force the eight most

signi�cant bits (the alpha byte) in the int representation of the current pixel to zero while preserving the
bit values stored in the least signi�cant 24 bits.

A bitwise OR operation
Then Listing 5 (p. 9) uses a bitwise OR operation (|) to store the hexadecimal value 5F in the eight

most signi�cant bits (the alpha byte) without changing the values stored in the 24 least signi�cant bits.
The alpha byte
The value of the alpha byte can range from 0 to 255. When rendered using a mechanism that supports

alpha transparency, an alpha value of zero causes the pixel to be totally transparent.
Similarly, an alpha value of 255 causes the pixel to be totally opaque.
Values between zero and 255 cause the pixel to be rendered as partially opaque or partially transparent,

whichever terminology you prefer.
Thirty-seven percent opaque
If I did the arithmetic correctly, a hexadecimal value of 5F represents a decimal value of 95. Therefore,

this value will cause the pixel to be about 37-percent opaque (or 63-percent transparent) .
The setBasicPixel method
As the name implies, the setBasicPixel method can be used to "set the value of a pixel in the picture

from an int."
Therefore, the last statement in the body of the inner loop in Listing 5 (p. 9) replaces the value of the

current pixel with the modi�ed value containing a value of 95 in the alpha byte.
The end of the cropAndFlip method
When the pair of nested for loops in Listing 5 (p. 9) terminates, the cropAndFlip method returns

control to the run method in Listing 3 (p. 8) , returning a copy of the reference from the variable named
output (see Listing 4 (p. 8)) in the process.

Save the Picture object's reference
The returned reference is stored in the reference variable named picC in Listing 3 (p. 8) .
At this point, picC contains a reference to a butter�y image that has been cropped, �ipped, and

formatted into a bu�ered image that contains alpha transparency information.
Call the copyPictureWithCrop method
Listing 3 (p. 8) immediately calls the copyPictureWithCrop method passing copies of the references

stored in picC and picB along with a pair of integer coordinate values.
The copyPictureWithCrop method
The copyPictureWithCrop method is shown in its entirety in Listing 6 (p. 10) .

Listing 6: The copyPictureWithCrop method.

private void copyPictureWithCrop(

Picture source,Picture dest,int xOff,

int yOff){

Graphics destGraphics = dest.getGraphics();

Image sourceImage = source.getImage();

destGraphics.drawImage(sourceImage,

http://cnx.org/content/m44911/1.1/

Connexions module: m44911 11

xOff,

yOff,

null);

}//end copyPictureWithCrop method

}//end class Prob06Runner

The purpose of the copyPictureWithCrop method is to copy a source picture onto a destination picture
with an o�set on each axis.

An exercise for the student
I won't attempt to explain the code in Listing 6 (p. 10) in this module. Instead, I will simply suggest

that you go to Google and search for the following or similar keywords:
baldwin java drawImage

You will �nd many tutorials that I have written that deal with topics in this area.
Modify the destination pixel colors
I will tell you that the use of the drawImage method in Listing 6 (p. 10) modi�es the destination

picture in such a way that the color of each pixel in the resulting image is a combination of the colors in the
original destination image and the corresponding pixel in the source image.

An illusion of transparency
If a source pixel is totally transparent, it has no e�ect on the color of the destination pixel.
If the source pixel is totally opaque, the color of the destination pixel is changed to the color of the source

pixel.
For alpha values between these two extremes, the �nal color of the destination pixel produces the illusion

of a partially transparent image in front of the original destination image.
Termination of the copyPictureWithCrop method
When the copyPictureWithCrop method terminates in Listing 6 (p. 10) , control returns to the run

method in Listing 3 (p. 8) .
Listing 3 (p. 8) calls the show method to display the image in the now-modi�ed Picture object

referred to by picB , as shown in Figure 3 (p. 5) .
Return a reference to an array object
Then the run method encapsulates references to each of the three images in an array object and returns

control to the main method in Listing 7 (p. 12) , returning a copy of the array object's reference in the
process.

The main method in Listing 7 (p. 12) displays information about each of the three Picture objects,
producing the output shown in Figure 4 (p. 6) . Then the main method terminates.

Images don't go away immediately
Because there are images belonging to the program still on the screen, the program doesn't return control

to the operating system. It will simply wait until it is forced to terminate by the user before returning control
to the operating system.

Clicking the X-buttons in the upper-right corners of the images will simply hide the frames and won't
terminate the program. Some extra work is required to deal with this issue.

6 Run the program

I encourage you to copy the code from Listing 7 (p. 12) . Compile the code and execute it. Experiment with
the code, making changes, and observing the results of your changes. Make certain that you can explain
why your changes behave as they do.

7 Summary

In this module, you learned about:

• Alpha transparency

http://cnx.org/content/m44911/1.1/

Connexions module: m44911 12

• A bu�ered image of type TYPE_INT_ARGB
• The ability to use the getBasicPixel and setBasicPixel methods,
• The use of the bitwise AND and OR operators,
• The use of the drawImage method of the Graphics class.

You modi�ed the SimplePicture class to cause the bu�ered image used to store the image to be
TYPE_INT_ARGB instead of TYPE_INT_RGB, which is its normal type.

You wrote a method that cropped and �ipped an image of a butter�y.
You used the getBasicPixel and setBasicPixel methods from Ericson's library along with bitwise

operations to set the alpha value for all the pixels in the cropped and �ipped image of the butter�y to a
hexadecimal value of 5F.

Finally, you used the standard drawImage method of the Graphics class to draw the image of the
butter�y onto an image of a beach with transparency.

8 What's next?

In the next module, you will learn how to use a slider to continuously change the opacity of an image and
to draw that modi�ed image onto a background image.

9 Miscellaneous

This section contains a variety of miscellaneous information.

note: Housekeeping material

• Module name: Java OOP: Using Alpha Transparency with Ericson's Media Library
• File: Java3112.htm
• Published: 05/13/12
• Revised: 09/05/12

note: Disclaimers: Financial : Although the Connexions site makes it possible for you to
download a PDF �le for this module at no charge, and also makes it possible for you to purchase a
pre-printed version of the PDF �le, you should be aware that some of the HTML elements in this
module may not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

10 Complete program listing

A complete listing of the program discussed in this module is shown in Listing 7 (p. 12) below.

Listing 7: Complete program listing.

http://cnx.org/content/m44911/1.1/

Connexions module: m44911 13

/*File Prob06 Copyright 2008 R.G.Baldwin

Revised 12/31/08

***/

import java.awt.Color;

import java.awt.Graphics;

import java.awt.Image;

public class Prob06{

//DO NOT MODIFY THE CODE IN THIS CLASS DEFINITION.

public static void main(String[] args){

Picture[] pictures = new Prob06Runner().run();

System.out.println(pictures[0]);

System.out.println(pictures[1]);

System.out.println(pictures[2]);

}//end main method

}//end class Prob06

//==//

class Prob06Runner{

public Prob06Runner(){//constructor

System.out.println("Dick Baldwin.");

}//end constructor

//--//

public Picture[] run(){

//Insert executable code here

Picture picA = new Picture("Prob06a.jpg");

picA.explore();

Picture picB = new Picture("Prob06b.jpg");

picB.addMessage("Dick Baldwin.",10,20);

picB.explore();

Picture picC = cropAndFlip(picA,4,5,80,105);

copyPictureWithCrop(picC,picB,122,70);

picB.show();

Picture[] output = {picA,picB,picC};

return output;

}//end run

//--//

//Crops a picture to the specified coordinate values and

// flips it around a vertical line at its center.

//Also makes it partially transparent

private Picture cropAndFlip(

Picture pic,int x1,int y1,int x2,int y2){

Picture output = new Picture(x2-x1+1,y2-y1+1);

int width = output.getWidth();

Pixel pixel = null;

http://cnx.org/content/m44911/1.1/

Connexions module: m44911 14

Color color = null;

for(int col = x1;col < (x2+1);col++){

for(int row = y1;row < (y2+1);row++){

color = pic.getPixel(col,row).getColor();

pixel = output.getPixel(width-col+x1-1,row-y1);

pixel.setColor(color);

}//end inner loop

}//end outer loop

width = output.getWidth();

int height = output.getHeight();

pixel = null;

color = null;

for(int col = 0;col < width;col++){

for(int row = 0;row < height;row++){

int basicPixel = output.getBasicPixel(col,row);

basicPixel = basicPixel & 0x00FFFFFF;

basicPixel = basicPixel | 0x5F000000;

output.setBasicPixel(col,row,basicPixel);

}//end inner loop

}//end outer loop

return output;

}//end crop and flip

//--//

//Copies the source picture onto the destination

// picture with an offset on both axes.

private void copyPictureWithCrop(

Picture source,Picture dest,int xOff,

int yOff){

Graphics destGraphics = dest.getGraphics();

Image sourceImage = source.getImage();

destGraphics.drawImage(sourceImage,

xOff,

yOff,

null);

}//end copyPictureWithCrop method

}//end class Prob06Runner

-end-

http://cnx.org/content/m44911/1.1/

