
Connexions module: m44912 1

Java OOP: Controlling Opacity with

a Slider
∗

Richard Baldwin

This work is produced by The Connexions Project and licensed under the

Creative Commons Attribution License †

Abstract

Learn how to use a slider to continuously change the opacity of an image and to draw that image

onto a background image.

1 Table of Contents

• Preface (p. 1)

· Viewing tip (p. 1)

* Figures (p. 2)
* Listings (p. 2)

• Preview (p. 2)
• General background information (p. 6)
• Discussion and sample code (p. 7)
• Run the program (p. 12)
• Summary (p. 12)
• What's next? (p. 12)
• Miscellaneous (p. 12)
• Complete program listing (p. 13)

2 Preface

This module is one of a series of modules designed to teach you about Object-Oriented Programming (OOP)
using Java.

The program described in this module requires the use of the Guzdial-Ericson multimedia class library.
You will �nd download, installation, and usage instructions for the library at Java OOP: The Guzdial-Ericson
Multimedia Class Library 1 .

2.1 Viewing tip

I recommend that you open another copy of this document in a separate browser window and use the
following links to easily �nd and view the �gures and listings while you are reading about them.

∗Version 1.3: Sep 6, 2012 1:36 pm -0500
†http://creativecommons.org/licenses/by/3.0/
1http://cnx.org/content/m44148/latest/

http://cnx.org/content/m44912/1.3/

Connexions module: m44912 2

2.1.1 Figures

• Figure 1 (p. 4) . Screen output at startup.
• Figure 2 (p. 5) . Twenty-percent opacity.
• Figure 3 (p. 6) . Eighty-percent opacity.

2.1.2 Listings

• Listing 1 (p. 7) . Modi�cation of the SimplePicture class.
• Listing 2 (p. 8) . Beginning of the class named Prob07Runner.
• Listing 3 (p. 8) . Beginning of the constructor.
• Listing 4 (p. 9) . Display the initial image.
• Listing 5 (p. 9) . Display the butter�y at 50-percent opacity.
• Listing 6 (p. 10) . The setOpacity method.
• Listing 7 (p. 11) . The drawPictureOnPicture method.
• Listing 8 (p. 11) . Begin the registration of an event handler on the slider.
• Listing 9 (p. 12) . Draw the butter�y and repaint.
• Listing 10 (p. 13) . Complete program listing.

3 Preview

The primary objective of this module is to illustrate how to use a slider to continuously change the opacity
of an image and to draw that image onto a background image.

Two approaches
This module builds on an earlier module involving transparency. In that module, you learned that there

are at least two ways to incorporate alpha transparency into Ericson's media library, The easiest way, which
is not necessarily the best way, is to make a relatively simple modi�cation to a constructor in Ericson's
SimplePicture class. That is the approach used in this module.

The second approach
The second approach is more complicated, but does not require the modi�cation of the classes in Ericson's

library. That is probably a better approach due simply to the fact that modi�cations to Ericson's library
are not required. However, that approach is not shown in this module.

Outside research
As with the earlier module, the program that I will explain in this module may require a signi�cant

amount of outside research on the part of the student in order to learn about:

• Alpha transparency
• A bu�ered image of type TYPE_INT_ARGB
• The ability to use Ericson's getBasicPixel and setBasicPixel methods,
• The use of the bitwise AND, OR, and left-shift operators.
• The use of the drawImage method of the Graphics class.

Modi�cation to the SimplePicture class
The student must modify the SimplePicture class to cause the bu�ered image used to store the image

to be TYPE_INT_ARGB instead of TYPE_INT_RGB , which is its normal type.
Generally speaking, this program:

• Instantiates a new visual object that extends the JFrame class and contains a JSlider object.
• Instantiates Picture objects from two image �les (beach and butter�y) along with some blank

Picture objects of the same size.

http://cnx.org/content/m44912/1.3/

Connexions module: m44912 3

• De�nes a method named setOpacity that can be called to set the opacity of every pixel in a picture
to a speci�ed value.

• De�nes a method named drawPictureOnPicture that can be called to draw one picture onto
another picture.

• Registers a ChangeEvent handler on the slider to:

· Extract a percent-opacity value from the slider based on the position of the thumb.
· Apply that opacity value to the butter�y image.
· Draw the modi�ed butter�y image on the beach image and display it.

Brief program speci�cations
Write a program named Prob07 that uses the class de�nition for the class named Prob07 in Listing

10 (p. 13) along with Ericson's media library and the image �les named Prob07a.jpg 2 and Prob07b.jpg 3

to produce the two output images shown in Figure 1 (p. 4) .

2http://cnx.org/content/m44912/latest/Prob07a.jpg
3http://cnx.org/content/m44912/latest/Prob07b.jpg

http://cnx.org/content/m44912/1.3/

Connexions module: m44912 4

Screen output at startup.

Figure 1: Screen output at startup.

Two output images
Note that Figure 1 (p. 4) actually consists of two output images, one positioned below the other.
Move the thumb to the left
When you move the thumb on the slider to the left, the butter�y becomes less opaque (more transparent)

as shown in Figure 2 (p. 5) with total transparency at the extreme left end of the slider.

http://cnx.org/content/m44912/1.3/

Connexions module: m44912 5

Twenty-percent opacity.

Figure 2: Twenty-percent opacity.

Move the thumb to the right
When you move the thumb on the slider to the right, the butter�y becomes more opaque (less transparent)

as shown in Figure 3 (p. 6) with total opacity at the extreme right end of the slider.

http://cnx.org/content/m44912/1.3/

Connexions module: m44912 6

Eighty-percent opacity.

Figure 3: Eighty-percent opacity.

De�ne new classes
You may de�ne new classes as necessary to cause your program to behave as required, but you may not

modify the class de�nition for the class named Prob07 given in Listing 10 (p. 13) .

4 General background information

The image in a SimplePicture object is stored in an object of the Bu�eredImage class, which is a
class in the standard Sun Java library.

Image data formats
An examination of the documentation for the Bu�eredImage class shows that the red, green, blue,

and alpha values for each pixel can be formatted in about fourteen di�erent ways in an object of the
Bu�eredImage class.

http://cnx.org/content/m44912/1.3/

Connexions module: m44912 7

No alpha data
Some of those formats, including the way that information is stored in a SimplePicture object, don't

include an alpha value.
Modi�cation of the SimplePicture class
One way to modify the SimplePicture class to force it to accommodate alpha transparency data is

to modify one of the constructors for the SimplePicture class as shown in Listing 1 (p. 7) . Note the
change indicated by comments in Listing 1 . (There are probably other ways that you can modify the class
to achieve the same result as well.)

Listing 1: Modi�cation of the SimplePicture class.

/**

* A constructor that takes the width and height desired

* for a picture and creates a buffered image of that

* size. This constructor doesn't show the picture.

*/

public SimplePicture(int width, int height){

//Disable the following statement

// bufferedImage = new BufferedImage(

// width, height, BufferedImage.

Future Picture objects will accommodate alpha transparency
Having made this modi�cation, future objects instantiated from the SimplePicture class using this

constructor will accommodate alpha transparency. (The SimplePicture class is the superclass of the
Picture class.)

No complete listing of SimplePicture provided
Because of the simplicity of this modi�cation, a complete listing of the modi�ed SimplePicture class

will not be provided in this module.

5 Discussion and sample code

5.1 The class named Prob07

You can view the driver class named Prob07 at the beginning of the source code in Listing 10 (p. 13) .
You are already familiar with the code in the main method of that class from earlier modules so I won't
spend any time explaining it.

Brie�y, the main method instantiates a new object of the class named Prob07Runner and calls the
run method on that object. When the run method returns, the GUI shown in Figure 1 (p. 4) has been
displayed on the screen.

At that point, the program simply goes into an idle state and waits for the user to take some action that
causes an event to be �red. When an event is �red, it is handled and the program goes idle again waiting
for another event.

(Because there are images on the screen, the program does not actually terminate until the user forces
it to terminate.)

5.2 The class named Prob07Runner

Will explain in fragments
I will explain this program in fragments. A complete listing of the program is provided in Listing 10 (p.

13) near the end of the module.
Beginning of the class named Prob07Runner
The class named Prob07Runner begins in Listing 2 (p. 8) .

http://cnx.org/content/m44912/1.3/

Connexions module: m44912 8

Listing 2: Beginning of the class named Prob07Runner.

class Prob07Runner extends JFrame{

private JPanel mainPanel = new JPanel();

private JPanel titlePanel = new JPanel();

private JSlider slider = new JSlider();

private Picture background = new Picture("Prob07b.jpg");

private Picture butterfly = new Picture("Prob07a.jpg");

private int backgroundWidth = background.getWidth();

private int backgroundHeight = background.getHeight();

private int butterflyWidth = butterfly.getWidth();

private int butterflyHeight = butterfly.getHeight();

private Picture display =

new Picture(backgroundWidth,backgroundHeight);

private Picture tempPicture =

new Picture(butterflyWidth,butterflyHeight);

private Image image = null;

private Graphics graphics = null;

Class extends JFrame
Note that this class extends JFrame . An object of this class forms the lower part of the image shown

in Figure 1 (p. 4) that contains the slider.
The code in Listing 1 (p. 7) is straightforward and shouldn't require an explanation.
When Listing 2 �nishes executing...
When the code in Listing 2 (p. 8) has �nished executing, four new Picture objects have been

instantiated and referred to by the following reference variables:

• background - The beach scene shown in the background in Figure 1 (p. 4) .
• butter�y - Contains an opaque image of the butter�y shown in Figure 1 (p. 4) .
• display - Empty picture the same size as the beach scene.
• tempPicture - Empty picture the same size as the butter�y.

In addition, a pair of working variables named image and graphics of the types Image and Graphics
have been declared.

Finally, when the code in Listing 2 (p. 8) has �nished executing, two new JPanel objects and one new
JSlider object have been instantiated and referred to by the variables named mainPanel , titlePanel
, and slider .

Beginning of the constructor
The beginning of the constructor is shown in Listing 3 (p. 8) .

Listing 3: Beginning of the constructor.

public Prob07Runner(){//constructor

//Do some initial setup.

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

http://cnx.org/content/m44912/1.3/

Connexions module: m44912 9

slider.setMajorTickSpacing(10);

slider.setMinorTickSpacing(5);

slider.setPaintTicks(true);

slider.setPaintLabels(true);

mainPanel.setLayout(new BorderLayout());

titlePanel.add(new JLabel(

"Percent Opacity of Butterfly"));

mainPanel.add(titlePanel,BorderLayout.NORTH);

mainPanel.add(slider,BorderLayout.CENTER);

getContentPane().add(mainPanel);

setSize(backgroundWidth + 7,97);

setLocation(0,backgroundHeight + 25);

setVisible(true);

Although it may be necessary for you to go to Sun's Java documentation to learn about the detailed behavior
of some of the methods that are called in Listing 3 (p. 8) , the code in Listing 3 (p. 8) is straightforward
and should not require further explanation.

Display the initial background image
Listing 4 (p. 9) displays the initial background image.
Instantiating and destroying a lot of new Picture objects as the user moves the slider to change the

opacity would be very ine�cient. To avoid this ine�ciency, this program gets images from existing Picture
objects and draws them on existing Picture objects without modifying the originals.

Listing 4: Display the initial image.

graphics = display.getGraphics();

graphics.drawImage(background.getImage(),0,0,null);

Display the butter�y at 50-percent opacity
Listing 5 (p. 9) calls the setOpacity and drawPictureOnPicture methods to set the opacity of

the butter�y and draw it onto the display with 50-percent opacity. The image of the butter�y is centered
on the background.

Listing 5: Display the butter�y at 50-percent opacity.

butterfly = setOpacity(butterfly,50);

drawPictureOnPicture(

butterfly,

display,

backgroundWidth/2 - butterflyWidth/2,

backgroundHeight/2 - butterflyHeight/2);

display.show();

Put the constructor on hold
At this point, I will put the discussion of the constructor on hold and explain the setOpacity and

drawPictureOnPicture methods.

http://cnx.org/content/m44912/1.3/

Connexions module: m44912 10

The setOpacity method
The setOpacity method is shown in its entirety in Listing 6 (p. 10) .

Listing 6: The setOpacity method.

private Picture setOpacity(

Picture pic,double percentOpacity){

int opacity = (int)(255*percentOpacity/100);

int opacityMask = opacity � 24;

for(int col = 0;col < butterflyWidth;col++){

for(int row = 0;row < butterflyHeight;row++){

//Get the pixel in basic int format.

int basicPixel = pic.getBasicPixel(col,row);

//Set the alpha value for the pixel.

basicPixel = basicPixel & 0x00FFFFFF;

basicPixel = basicPixel | opacityMask;

//Set the modified pixel into tempPicture.

tempPicture.setBasicPixel(col,row,basicPixel);

}//end inner loop

}//end outer loop

return tempPicture;

}//end setOpacity

This method copies an incoming picture into an existing temporary picture, setting the alpha value for
every pixel to a speci�ed value in the process. Then it returns the modi�ed picture object's reference where
it is saved in the reference variable named butter�y in Listing 5 (p. 9) ,

A bitwise left-shift operation
The only thing in Listing 6 (p. 10) that is new to this module is the use of a bitwise left-shift operation.
A 24-bit left shift
Listing 6 (p. 10) converts the incoming percentOpacity value to an integer value ranging from 0 to

255. This value resides in the least signi�cant eight bits of an int variable named opacity .
Then Listing 6 (p. 10) applies the bitwise left-shift operator (two left angle brackets) to shift those eight

bits into the eight most signi�cant bits and stores the result in another int variable named opacityMask
.

Apply the opacityMask to the pixels
A pair of nested for loops is used to set the alpha value of every pixel to the value of opacityMask

using an overall bit-masking methodology that I explained in an earlier module.
The drawPictureOnPicture method
After the alpha value for every pixel in the butter�y image has been set to the speci�ed opacity, Listing

5 (p. 9) calls the method named drawPictureOnPicture to draw the modi�ed butter�y image on the
beach scene as shown in Figure 1 (p. 4) .

http://cnx.org/content/m44912/1.3/

Connexions module: m44912 11

The drawPictureOnPicture method is shown in its entirety in Listing 7 (p. 11) .

Listing 7: The drawPictureOnPicture method.

private void drawPictureOnPicture(

Picture source,Picture dest,int xOff,

int yOff){

Graphics destGraphics = dest.getGraphics();

Image sourceImage = source.getImage();

destGraphics.drawImage(sourceImage,

xOff,

yOff,

null);

}//end drawPictureOnPicture method

This method draws the source picture onto the destination picture with an o�set on both axes. There is
nothing in Listing 7 (p. 11) that I haven't explained in an earlier module.

Return to the explanation of the constructor
You are already familiar with the use of anonymous inner classes to create and register listener objects

on Java source objects. The slider is a source object.
Listing 8 (p. 11) begins the registration of an anonymous ChangeEvent listener on the slider.

Listing 8: Begin the registration of an event handler on the slider.

slider.addChangeListener(

new ChangeListener(){

public void stateChanged(ChangeEvent e){

//Draw a new copy of the background on the

// display.

graphics = display.getGraphics();

graphics.drawImage(

background.getImage(),0,0,null);

Restore the background image
Each time the slider �res a ChangeEvent , this event handler draws a new background image on the

display. This erases what was previously drawn there, restoring a pristine image of the beach scene.
Draw a partially opaque butter�y image on the background
Then it uses the current value of the slider to set the opacity of the butter�y image and draws it centered

on the display on top of the background image.
A series of events
The slider �res a series of ChangeEvents as the user moves the thumb on the slider. Listing 8 (p.

11) begins the de�nition of the event handler method named stateChanged , which is registered on the
slider. This method is called each time the slider �res a ChangeEvent .

Listing 8 (p. 11) draws a new copy of the beach background image on the Picture object referred to
by the reference variable named background . This image replaces the image that was previously drawn
there.

Draw the butter�y and repaint
Listing 9 (p. 12) calls the setOpacity and drawPictureOnPicture methods to:

http://cnx.org/content/m44912/1.3/

Connexions module: m44912 12

• Set the opacity of the butter�y to the value currently represented by the position of the thumb on the
slider. This is the value returned by the slider's getValue method.

• Draw the butter�y image on the background image.

Listing 9: Draw the butter�y and repaint.

//Set the opacity of butterfly and copy it onto

// the display. Then repaint the display.

butterfly =

setOpacity(butterfly,slider.getValue());

drawPictureOnPicture(

butterfly,

display,

backgroundWidth/2 - butterflyWidth/2,

backgroundHeight/2 - butterflyHeight/2);

display.repaint();

}//end stateChanged

}//end new ChangeListener

);//end addChangeListener

//--//

}//end constructor

Repaint the image
Then Listing 9 (p. 12) calls the repaint method to cause the modi�ed image to be rendered onto the

computer screen.
The end of the program
Listing 9 (p. 12) also signals the end of the constructor, the end of the class named Prob07Runner ,

and the end of the program.

6 Run the program

I encourage you to copy the code from Listing 10 (p. 13) . Compile the code and execute it. Experiment
with the code, making changes, and observing the results of your changes. Make certain that you can explain
why your changes behave as they do.

7 Summary

In this module, you learned how to use a slider to continuously change the opacity of an image and draw
that image onto a background image.

8 What's next?

In the next module, you will learn how to use a slider to continuously change the threshold detection level
of an edge detector and to draw the edge-detected image on the screen.

9 Miscellaneous

This section contains a variety of miscellaneous information.

note: Housekeeping material

http://cnx.org/content/m44912/1.3/

Connexions module: m44912 13

• Module name: Java OOP: Controlling Opacity with a Slider
• File: Java3114.htm
• Published: 05/13/12
• Revised: 09/06/12

note: Disclaimers: Financial : Although the Connexions site makes it possible for you to
download a PDF �le for this module at no charge, and also makes it possible for you to purchase a
pre-printed version of the PDF �le, you should be aware that some of the HTML elements in this
module may not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

10 Complete program listing

A complete listing of the program discussed in this module is shown in Listing 10 (p. 13) below.

Listing 10: Complete program listing.

/*File Prob07 Copyright 2008 R.G.Baldwin

***/

import java.awt.Color;

import java.awt.Graphics;

import java.awt.Image;

import java.awt.BorderLayout;

import javax.swing.JFrame;

import javax.swing.JPanel;

import javax.swing.JSlider;

import javax.swing.JLabel;

import javax.swing.event.ChangeListener;

import javax.swing.event.ChangeEvent;

public class Prob07{

//DO NOT MODIFY THE CODE IN THIS CLASS DEFINITION.

public static void main(String[] args){

new Prob07Runner();

}//end main method

}//end class Prob07

//==//

class Prob07Runner extends JFrame{

http://cnx.org/content/m44912/1.3/

Connexions module: m44912 14

private JPanel mainPanel = new JPanel();

private JPanel titlePanel = new JPanel();

private JSlider slider = new JSlider();

private Picture background = new Picture("Prob07b.jpg");

private Picture butterfly = new Picture("Prob07a.jpg");

private int backgroundWidth = background.getWidth();

private int backgroundHeight = background.getHeight();

private int butterflyWidth = butterfly.getWidth();

private int butterflyHeight = butterfly.getHeight();

private Picture display =

new Picture(backgroundWidth,backgroundHeight);

private Picture tempPicture =

new Picture(butterflyWidth,butterflyHeight);

private Image image = null;

private Graphics graphics = null;

public Prob07Runner(){//constructor

//Do some initial setup.

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

slider.setMajorTickSpacing(10);

slider.setMinorTickSpacing(5);

slider.setPaintTicks(true);

slider.setPaintLabels(true);

mainPanel.setLayout(new BorderLayout());

titlePanel.add(new JLabel(

"Percent Opacity of Butterfly"));

mainPanel.add(titlePanel,BorderLayout.NORTH);

mainPanel.add(slider,BorderLayout.CENTER);

getContentPane().add(mainPanel);

setSize(backgroundWidth + 7,97);

setLocation(0,backgroundHeight + 25);

setVisible(true);

//Draw and display the initial image with 50-percent

// opacity. In order to avoid instantiating and

// destroying a lot of Picture objects, the

// procedure is to simply get images from existing

// picture objects and draw them on other existing

// picture objects.

graphics = display.getGraphics();

graphics.drawImage(background.getImage(),0,0,null);

http://cnx.org/content/m44912/1.3/

Connexions module: m44912 15

//Set the opacity of butterfly and draw it onto the

// display. In this case, the opacity is set to

// 50-percent. The image of the butterfly is centered

// on the background.

butterfly = setOpacity(butterfly,50);

drawPictureOnPicture(

butterfly,

display,

backgroundWidth/2 - butterflyWidth/2,

backgroundHeight/2 - butterflyHeight/2);

display.show();

//--//

//Register an anonymous listener object on the slider.

//Each time the slider fires a ChangeEvent, this event

// handler draws a new background image on the

// display. This erases what was previously drawn

// there. Then it uses the current value of the slider

// to set the opacity of the butterfly image and

// draws it on the display on top of the background

// image. It is centered on the background image.

slider.addChangeListener(

new ChangeListener(){

public void stateChanged(ChangeEvent e){

//Draw a new copy of the background on the

// display.

graphics = display.getGraphics();

graphics.drawImage(

background.getImage(),0,0,null);

//Set the opacity of butterfly and copy it onto

// the display. Then repaint the display.

butterfly =

setOpacity(butterfly,slider.getValue());

drawPictureOnPicture(

butterfly,

display,

backgroundWidth/2 - butterflyWidth/2,

backgroundHeight/2 - butterflyHeight/2);

display.repaint();

}//end stateChanged

}//end new ChangeListener

);//end addChangeListener

//--//

}//end constructor

//--//

//This method copies an incoming picture into an

// existing temporary picture, setting the alpha value

// for every pixel to a specified value. Then it returns

// the modified temporary picture object.

http://cnx.org/content/m44912/1.3/

Connexions module: m44912 16

private Picture setOpacity(

Picture pic,double percentOpacity){

int opacity = (int)(255*percentOpacity/100);

int opacityMask = opacity � 24;

for(int col = 0;col < butterflyWidth;col++){

for(int row = 0;row < butterflyHeight;row++){

//Get the pixel in basic int format.

int basicPixel = pic.getBasicPixel(col,row);

//Set the alpha value for the pixel.

basicPixel = basicPixel & 0x00FFFFFF;

basicPixel = basicPixel | opacityMask;

//Set the modified pixel into tempPicture.

tempPicture.setBasicPixel(col,row,basicPixel);

}//end inner loop

}//end outer loop

return tempPicture;

}//end setOpacity

//--//

//Draws the source picture onto the destination

// picture with an offset on both axes.

private void drawPictureOnPicture(

Picture source,Picture dest,int xOff,

int yOff){

Graphics destGraphics = dest.getGraphics();

Image sourceImage = source.getImage();

destGraphics.drawImage(sourceImage,

xOff,

yOff,

null);

}//end drawPictureOnPicture method

}//end class Prob07Runner

-end-

http://cnx.org/content/m44912/1.3/

