
Connexions module: m45148 1

Jb0190: Java OOP: Using the System

and PrintStream Classes
∗

Richard Baldwin

This work is produced by The Connexions Project and licensed under the

Creative Commons Attribution License †

Abstract

Take a preliminary look at the complexity of OOP by examining some aspects of the System and

PrintStream classes.

1 Table of Contents

• Preface (p. 1)

· Viewing tip (p. 1)

* Listings (p. 1)

• Introduction (p. 2)
• Discussion (p. 2)
• A word about class variables (p. 3)
• Run the program (p. 4)
• Miscellaneous (p. 4)

2 Preface

This module takes a preliminary look at the complexity of OOP by examining some aspects of the System

and PrintStream classes.

2.1 Viewing tip

I recommend that you open another copy of this module in a separate browser window and use the following
links to easily �nd and view the listings while you are reading about them.

2.1.1 Listings

• Listing 1 (p. 2) . The program named hello1.
• Listing 2 (p. 3) . Display the string "Hello World".

∗Version 1.1: Nov 18, 2012 11:06 am -0600
†http://creativecommons.org/licenses/by/3.0/

http://cnx.org/content/m45148/1.1/

Connexions module: m45148 2

3 Introduction

This lesson introduces you to the use of the System and PrintStream classes in Java. This is our �rst
introduction to the complexity that can accompany the OOP paradigm. It gets a little complicated, so
you might need to pay special attention to the discussion.

4 Discussion

What does the main method do?

The main method in the controlling class of a Java application controls the �ow of the program.
The main method can also access other classes along with the variables and methods of those classes

and of objects instantiated from those classes.
The hello1 Application

Listing 1 (p. 2) shows a simple Java application named hello1 .
(By convention, class de�nitions should begin with an upper-case character. However, the original

version of this module was written and published in 1997, before that convention was �rmly established.)

Listing 1: The program named hello1.

/*File hello1.java Copyright 1997, R.G.Baldwin

**/

class hello1 { //define the controlling class

//define main method

public static void main(String[] args){

//display text string

System.out.println("Hello World");

}//end main

}//End hello1 class. No semicolon at end of Java class.

Does this program Instantiate objects?

This is a simple example that does not instantiate objects of any other class.
Does this program access another class?

However, it does access another class. It accesses the System class that is provided with the Java
development kit. (The System class will be discussed in more detail in a future module.)

The variable named out

The variable named out , referred to in Listing 1 (p. 2) as System.out , is a class variable of the
System class. (A class variable is a variable that is declared to be static.)

Recall that a class variable can be accessed without a requirement to instantiate an object of the class.
As is the case with all variables, the class variable must be of some speci�c type.

Primitive variables vs. reference variables

A class variable may be a primitive variable , which contains a primitive value, or it may be a reference
variable , which contains a reference to an object.

(I'll have more to say about the di�erence between primitive variables and reference variables in a future
module.)

The variable named out in this case is a reference variable , which refers to an object of another type.
Accessing class variables

You access class variables or class methods in Java by joining the name of the class to the name of the
variable or method with a period.

note: System.out

accesses the class variable named out in the Java class named System .

http://cnx.org/content/m45148/1.1/

Connexions module: m45148 3

The PrintStream class

Another class that is provided with the Java development kit is the PrintStream class. The
PrintStream class is in a package of classes that are used to provide stream input/output capability
for Java.

What does the out variable refer to?

The out variable in the System class refers to (points to) an instance of the PrintStream class
(a PrintStream object), which is automatically instantiated when the System class is loaded into the
application.

We will be discussing the PrintStream class along with a number of other classes in detail in a future
module on input/output streams, so this is not intended to be an exhaustive discussion.

The println method

The PrintStream class has an instance method named println , which causes its argument to be
displayed on the standard output device when it is called.

(Typically, the standard output device is the command-line window. However, it is possible to redirect
it to some other device.)

Accessing an instance method

The method named println can be accessed by joining a PrintStream object's reference to the
name of the method using a period.

Thus, (assuming that the standard output device has not been redirected) , the statement shown in
Listing 2 (p. 3) causes the string "Hello World" (without the quotation marks) to be displayed in the
command-line window.

Listing 2: Display the string "Hello World".

System.out.println("Hello World");

This statement calls the println method of an object instantiated from the PrintStream class, which
is referred to (pointed to) by the variable named out , which is a class variable of the System class.

Read the previous paragraph very carefully. As I indicated when I started this module, this is our �rst
introduction to the complexity that can result from use of the OOP paradigm. (It can get even more
complicated.) If this is not clear to you, go back over it and think about it until it becomes clear.

5 A word about class variables

How many instances of a class variable exist?

The runtime system allocates a class variable only once no matter how many instances (objects) of the
class are instantiated.

All objects of the class share the same physical memory space for the class variable.
If a method in one object changes the value stored in the class variable, it is changed insofar as all of the

objects are concerned. (This is about as close to a global variable as you can get in Java.)
Accessing a class variable

You can use the name of the class to access class variables by joining the name of the class to the name
of the variable using a period.

You can also access a class variable by joining the name of a reference variable containing an object's
reference to the name of the variable using a period as the joining operator.

Referencing object methods via class variables

Class variables are either primitive variables or reference variables. (Primitive variables contain primitive
values and reference variables contain references to objects.)

A referenced object may provide methods to control the behavior of the object. In Listing 2 (p. 3) , we
accessed the println method of an object of the PrintStream class referred to by the class variable
named out .

http://cnx.org/content/m45148/1.1/

Connexions module: m45148 4

Instance variables and methods

As a side note, in addition to class variables, Java provides instance variables and instance methods .
Every instance of a class has its own set of instance variables. You can only access instance variables and
instance methods through an object of the class.

6 Run the program

I encourage you to copy the code from Listing 1 (p. 2) . Compile the code and execute it. Experiment with
the code, making changes, and observing the results of your changes. Make certain that you can explain
why your changes behave as they do.

7 Miscellaneous

This section contains a variety of miscellaneous information.

note: Housekeeping material

• Module name: Jb0190: Java OOP: Using the System and PrintStream Classes
• File: Jb0190.htm
• Originally published: 1997
• Published at cnx.org: November 18, 2012

note: Disclaimers: Financial : Although the Connexions site makes it possible for you to
download a PDF �le for this module at no charge, and also makes it possible for you to purchase a
pre-printed version of the PDF �le, you should be aware that some of the HTML elements in this
module may not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

http://cnx.org/content/m45148/1.1/

