

 [image: Jb0230: Java OOP: Flow of Control]

 Jb0230: Java OOP: Flow of Control
By: Richard Baldwin
Online: <http://cnx.org/content/m45196/1.3/>
This module is copyrighted by Richard Baldwin.
It is licensed under the Creative Commons Attribution License: http://creativecommons.org/licenses/by/3.0/
Module revised: 2012/11/25

Jb0230: Java OOP: Flow of Control
By: Richard Baldwin
Online: <http://cnx.org/content/m45196/1.3/>
This module is copyrighted by Richard Baldwin.
It is licensed under the Creative Commons Attribution License: http://creativecommons.org/licenses/by/3.0/
Module revised: 2012/11/25

Jb0230: Java OOP: Flow of Control

1.
Table of Contents

 	

Preface

 	

Viewing tip

 	

Figures

	

Listings

		

	

	

	

Introduction

 	

		

Flow of control

	

		

The while statement

	

		

The if-else statement

	

		

The switch-case statement

	

The for
loop

	

The for-each loop

	

		

The do-while loop

	

		

The break and continue statements

	

		

Unlabeled break and continue

	

		

Labeled break and continue statements

 	

		

Labeled break statements

	

		

Labeled continue statements

		

	

		

The return statement

	

		

Exception handling

	

	

Looking ahead

	

Miscellaneous

2.

Preface

Java supports several different statements designed to alter or control the logical flow of the program.
	This module explores those statements.

Viewing tip

I recommend that you open another copy of this module in a separate
browser window and use the following links to easily find and view the figures
and listings while you are reading about them.

Figures

 	

Figure 1

. Statements that support flow of control.

	

Figure 2

. Syntax of a while statement.

	

Figure 3

. Syntax of an if-else statement.

	

Figure 4

. Syntax of a switch-case statement.

	

Figure 5

. Syntax of a for loop.

	

Figure 6

. Syntax of a do-while loop.

	

Figure 7

. Syntax of a labeled statement.

	

Figure 8

. An empty return statement.

	

Figure 9

. Returning a value from a method.

Listings

 	

Listing 1

. Sample Java while statement.

	

Listing 2

. A program that won't compile.

	

Listing 3

. Another program that won't compile.

	

Listing 4

. A program that will compile.

	

Listing 5

. Another program that will compile.

	

Listing 6

. The program named switch1.java.

	

Listing 7

. The program named switch2.java.

3.

Introduction

The first step

The first step in learning to use a new programming language is usually to
learn the foundation concepts such as variables, types, expressions,
flow-of-control, etc. This module concentrates on

flow-of-control

.

4.

Flow of
control

What is flow of control?

Java supports several different kinds of
statements designed to alter or control the logical flow of the program.

The ability to alter the logical flow of the program is often referred to as

Flow of Control

.

Statements that support flow of
control

Figure 1

 lists the statements supported by Java
for controlling the logical flow of the
program.

	

Statement Type

if-else selection
switch-case selection
for loop
for-each loop
while loop
do-while loop
try-catch-finally exception handling
throw exception handling
break miscellaneous
continue miscellaneous
label: miscellaneous
return miscellaneous
goto reserved by Java but not supported

							

Figure 1.

Statements that support flow of control.

Statements that support flow of control.

The
while statement

We've seen the

while

statement in earlier modules. Several of the programs in earlier modules contained a

while

statement designed to control the logical flow of the program.

Syntax of a while statement

The general syntax of a

while

statement is shown in

Figure 2

.

	

while (conditional expression)
 statement or compound statement;

							

Figure 2.

Syntax of a while 				statement.

Syntax of a while 				statement.

Behavior of a while statement

The

three pillars

 of procedural programming are

 	
sequence

	
selection

	
loop

The

while

 statement is commonly used to create a loop
structure, often referred to as a

while loop

.

Once the

while

 statement is encountered in the sequence of
code, the program will continue to execute
the statement or compound statement shown in

Figure 2

 for as long as the conditional expression
evaluates to true.

(Note that a compound statement is created by enclosing
two or more statements inside a pair of matching curly brackets, thus creating a
block of code as the body of the

while

 statement or loop.)

Sample Java

while

 statement

The

while

 statement shown in

Listing 1

 was extracted from a
Java program in an earlier module.

Example 1.

while((ch1 = System.in.read()) != '#')
 ch2 = ch1;

The

in

 variable of the

System

 class

The

System

 class defines a

class

 variable named

in

. Because it is a

class

 variable, it can be accessed using the name
of the

System

 class without the requirement to instantiate an object of
the

System

 class.

What the

in

 variable contains

The

in

 variable refers to an instance of a class that
provides a

read

 method that returns a character from the standard
input device

(typically the keyboard)

.

Therefore, the expression

System.in.read()

 in

Listing 1

 constitutes a call
to the

read

 method of the object referred to by the

in

 variable of
the

System

 class.

A

while

 loop is an entry condition
loop

The

while

 statement is used to form an

entry condition

 loop. The significance of an entry condition loop is
that the conditional expression is tested before the statements in the loop are
executed. If it tests false initially, the statements in the loop are never
executed.

The

while

 loop shown in

Listing 1

will continue reading characters from the keyboard for as long as the character
entered is not the # character.

(Recall the not equal (!=) operator from an
earlier module.)

The
if-else statement

The general syntax of an

if-else

 statement is shown in

Figure 3

.

	

if(conditional expression)
 statement or compound statement;
else //optional
 statement or compound statement; //optional

							

Figure 3.

Syntax of an if-else statement.

Syntax of an if-else statement.

The

if-else

 statement is the most basic of the statements used to control the logical flow
	of a Java program. It is used to satisfy the

selection

 pillar
	mentioned

earlier

.

This statement will execute a specified block of code if some particular
condition is true, and optionally, will execute a different block of code if the
condition is not true.

The

else

 clause shown in

Figure 3

 is optional. If it is not provided and the
condition is not true, control simply passes to the next statement following the

If

 statement with none of the code in the body of the

if

statement being executed. If the condition is true, the code in the body of the

if

 statement is executed.

If the

else

 clause is provided and the condition is true,
the code in the body of the

if

 clause is executed and the code in the
body of the

else

 clause is ignored.

If the

else

 clause is provided and the condition is false,
the code in the body of the

if

 clause is ignored and the code in the
body of the

else

 clause is executed.

In all cases, control passes to the next statement following the

if-else

 statement when the code in the

if-else

statement has finished executing. In other words, this is not a loop structure.

The switch-case statement

The

switch-case

 statement is another implementation of the

selection

 pillar mentioned

earlier

. The general syntax of a

switch-case

 statement is shown in

Figure 4

.

	

switch(expression){
 case constant:
 //sequence of optional statements
 break; //optional
 case constant:
 //sequence of optional statements
 break; //optional
.
.
.
 default //optional
 //sequence of optional statements
}

							

Figure 4.

Syntax of a switch-case statement.

Syntax of a switch-case statement.

The type of the

expression

According to the book,

Java Language Reference

, by Mark
Grand, the expression shown in the first line in

Figure 4

 must be
of type

byte

,

char

,

short

, or

int

.

The behavior of the switch-case statement

The expression is tested against a series of

case

 constants
of the same type as the expression. If a match
is found, the sequence of optional statements associated with that

case

 is executed.

Execution of statements continues until the optional

break

 is
encountered. When

break

 is encountered, execution of the switch
statement is terminated and control passes to the next statement following
the switch statement.

If there is no

break

 statement, all of the statements
following the matching case will be executed including those in cases further
down the page.

The optional default keyword

If no match is found and the optional default keyword
along with a sequence of optional statements has been provided, those statements
will be executed.

Labeled break

Java also supports labeled break statements.
This capability can be used to cause Java to exhibit different behavior when
switch statements are nested. This will be explained more fully in a later
section on labeled break statements.

The for
loop

The

for

 statement is another implementation of the

loop

pillar mentioned

earlier

.

Actions of a

for loop

The operation of a loop normally involves three actions in
addition to executing the code in the body of the loop:

 	
Initialize a control variable.

	
Test the control variable in a conditional expression.

	
Update the control variable.

Grouping the actions

Java provides the

for

 loop construct that groups these
three actions in one place.

The syntax of a for loop

A

for

 loop consists of three clauses separated
by semicolons as shown in

Figure 5

.

	

for (first clause; second clause; third clause)
 single or compound statement

							

Figure 5.

Syntax of a for loop.

Syntax of a for loop.

Contents of the clauses

The first and third clauses can contain one or more
expressions, separated by the

comma operator

.

The

comma operator

The comma operator guarantees
that its left operand will be executed before its right operand.

(While the comma operator has other uses in C++, this is the only
use of the comma operator in Java.)

Behavior and purpose of the first
clause

The expressions in the first clause are
executed only once, at the beginning of the loop. Any legal expression(s)
may be contained in the first clause, but typically the first clause is used for
initialization.

Declaring and initializing variables
in the first clause

Variables can be declared and initialized in
the first clause, and this has an interesting ramification regarding scope that
will be discussed later.

Behavior of the second clause

The second clause consists of a single
expression that must evaluate to a

boolean

 type with a value
of true or false. The expression in the second clause must eventually evaluate to false to cause the loop to
terminate.

Typically relational expressions or relational and conditional
expressions are used in the second clause.

When the test is performed

The value of the second clause is tested when the statement
first begins execution, and at the beginning of each iteration thereafter.
Therefore, just like the

while

 loop, the

for

 loop is an

entry condition loop

.

When the third clause is executed

Although the third clause appears physically at the top of the loop, it isn't
executed until the statements in the body of the loop have completed
execution.

This is an important point since this clause is typically used to update the
control variable, and perhaps other variables as well.

What the third clause can contain

Multiple expressions can appear in the third clause, separated
by the comma operator. Again, those expressions will be executed from
left to right. If variables are updated in the third clause and used in the body
of the loop, it is important to understand that they do not get updated until
the execution of the body is completed.

Declaring a variable in a

for

 loop

As mentioned earlier, it is allowable to declare
variables in the first clause of a

for

 loop.

You can declare a variable with a given name outside

(prior to)

 the

for

 loop, or you can declare it inside the

for

loop, but not both.

If you declare it outside the

for

 loop, you can access it either
outside or inside the loop.

If you declare it inside the loop, you can access it only inside the
loop. In other words, the scope of variables declared inside a

for

loop is limited to the loop.

This is illustrated in following sequence of four simple programs.

This program won't compile

The Java program shown in

Listing 2

 refuses to compile with a complaint
that a variable named

cnt

 has already been declared in the method when
the attempt is made to declare it in the

for

 loop.

Example 2.

/*File for1.java Copyright 1997, R.G.Baldwin
This program will not compile because the variable
named cnt is declared twice.
**/
class for1 { //define the controlling class
 public static void main(String[] args){ //main method
 int cnt = 5; //declare local method variable
 System.out.println(
 "Value of method var named cnt is " + cnt);

 for(int cnt = 0; cnt < 2; cnt++)
 System.out.println(
 "Value of loop var named cnt is " + cnt);

 System.out.println(
 "Value of method var named cnt is " + cnt);
 }//end main
}//End controlling class. Note no semicolon required

The program shown in

Listing 3

 also won't compile, but
for a different reason.

Example 3.

/*File for2.java Copyright 1997, R.G.Baldwin
This program will not compile because the variable
declared inside the for loop is not accessible
outside the loop.
**/
class for2 { //define the controlling class
 public static void main(String[] args){ //main method

 for(int cnt = 0; cnt < 2; cnt++)
 System.out.println(
 "Value of loop var named cnt is " + cnt);

 System.out.println(
 "Value of method var named cnt is " + cnt);
 }//end main
}//End controlling class. Note no semicolon required

The declaration of the variable named

cnt

, outside the

for

 loop, was removed from

Listing 3

 and the declaration inside the
loop was allowed to remain. This eliminated the problem of attempting to declare
the variable twice.

However, this program refused to compile because an attempt was made to
access the variable named

cnt

 outside the for loop. This was not
allowed because the variable was declared inside the

for

 loop and the
scope of the variable was limited to the loop.

This program will compile

The Java program shown in

Listing 4

 will compile and run because the
variable named

cnt

 that is declared inside the

for

 loop is
accessed only inside the

for

 loop. No reference to a variable with the
same name appears outside the loop.

Example 4.

/*File for3.java Copyright 1997, R.G.Baldwin
This program will compile because the variable declared
inside the for loop is accessed only inside the loop.
**/
class for3 { //define the controlling class
 public static void main(String[] args){ //main method

 for(int cnt = 0; cnt < 2; cnt++)
 System.out.println(
 "Value of loop var named cnt is " + cnt);
 }//end main
}//End controlling class.

This program will also compile

Similarly, the program shown in

Listing 5

 will compile and run
because the variable named

cnt

 was declared outside the

for

 loop
and was not declared inside the

for

 loop. This made it possible to access
that variable both inside and outside the loop.

Example 5.

/*File for4.java Copyright 1997, R.G.Baldwin
This program will compile and run because the variable
named cnt is declared outside the for loop and is not
declared inside the for loop.
**/
class for4 { //define the controlling class
 public static void main(String[] args){ //main method
 int cnt = 5; //declare local method variable
 System.out.println(
 "Value of method var named cnt is " + cnt);

 for(cnt = 0; cnt < 2; cnt++)
 System.out.println(
 "Value of loop var named cnt is " + cnt);

 System.out.println(
 "Value of method var named cnt is " + cnt);
 }//end main
}//End controlling class. Note no semicolon required

Empty clauses in a

for

 loop

The first and third clauses in a

for

 loop can be
left empty but the semicolons must be there as placeholders.

One author suggests that even the middle clause can be empty, but it isn't
obvious to this author how the loop would ever terminate if there is no
conditional expression to be evaluated. Perhaps the loop could be terminated by
using a break inside the loop, but in that case, you might just as well
use a

while

 loop.

The for-each loop

There is another form of loop structure that is often referred to as a

for-each

 loop. In order to appreciate the benefits of
this loop structure, you need to be familiar with Java collections and iterators,
both of which are beyond the scope of this module.

As near as I can tell, there is nothing that you can do with the

for-each

 loop that you cannot also do with the conventional

for

loop described above. Therefore, I rarely use it. You can find a description of
the

for-each

 loop on this Oracle

website

.

I don't plan to discuss it further in this module. However, before you go for
a job interview, you should probably do some online research and learn about it
because an interviewer could use a question about the

for-each

loop to trip you up in the Q and A portion of the interview.

The
do-while loop

The

do-while

 loop is another implementation of the

loop

pillar mentioned

earlier

. However, it differs from
the

while

 loop and the

for

 loop in one
important respect; it is an

exit-condition

 loop.

An exit-condition loop

Java provides an

exit-condition

 loop
having the syntax shown in

Figure 6

.

	

do {
 statements
 } while (conditional expression);

							

Figure 6.

Syntax of a do-while loop.

Syntax of a do-while loop.

Behavior

The statements in the body of the loop continue to be
executed for as long as the conditional expression evaluates to true.
An exit-condition loop guarantees that the body of the loop will be
executed at least one time, even if the conditional expression
evaluates to false the first time it is tested.

The break and continue statements

General behavior

Although some authors suggest that the

break

 and

continue

 statements provide an
alternative to the infamous

goto

 statement of earlier
programming languages, it appears that the behaviors of the

labeled break

 and

labeled continue

 statements
are much
more restrictive than a general

goto

.

Unlabeled break and continue

The

break

 and

continue

 statements are
supported in both labeled and unlabeled form.

First consider the behavior of break and continue in
their unlabeled configuration.

Use of a

break

 statement

The

break

 statement can be used in a switch
statement or in a loop. When encountered in a switch statement, break
causes control to be passed to the next statement outside the innermost
enclosing switch statement.

When break is encountered in a loop, it causes control to be passed to
the next statement outside the innermost enclosing loop.

As you will see later, labeled break statements can be used to
pass control to the next statement following switch or loop statements
beyond the innermost switch or loop statement when those
statements are nested.

Use of a continue statement

The continue statement cannot be used in a switch statement, but can be used
inside a loop.

When an unlabeled continue statement is encountered, it causes the current iteration
of the current loop to be terminated and the next
iteration to begin.

A labeled continue statement can cause control to be passed to the
next iteration of an outer enclosing loop in a nested loop
situation.

An example of the use of an unlabeled switch statement is given
in the next section.

Labeled break and continue statements

This section discusses the use of labeled break and
continue statements.

Labeled break Statements

One way to describe the behavior of a labeled break in
Java is to say: "Break all the way out of the labeled statement."

Syntax of a labeled statement

To begin with, the syntax of a labeled statement is a label followed by a colon ahead of the statement
as shown in

Figure 7

.

	

myLabel: myStatement;

							

Figure 7.

Syntax of a labeled 				statement.

Syntax of a labeled 				statement.

The label can be any legal Java identifier.

Behavior of labeled break

The behavior of a labeled break can best be
illustrated using nested switch statements. For a comparison of
labeled and unlabeled switch statements, consider the
program shown in

Listing 6

 named

switch1

, which does not use a labeled
break. Even though this program has a labeled statement, that statement is
not referenced by a

break

. Therefore, the label is of no consequence.

Example 6.

/*File switch1.java
This is a Java application which serves as a baseline
comparison for switch2.java which uses a labeled break.
Note that the program uses nested switch statements.

The program displays the following output:

Match and break from here
Case 6 in outer switch
Default in outer switch
Beyond switch statements

**/
class switch1 { //define the controlling class
 public static void main(String[] args){ //main method

 //Note that the following labeled switch statement is
 // not referenced by a labeled break in this program.
 // It will be referenced in the next program.
 outerSwitch: switch(5){//labeled outer switch statement
 case 5: //execute the following switch statement
 //Note that the code for this case is not followed
 // by break. Therefore, execution will fall through
 // the case 6 and the default.
 switch(1){ //inner switch statement
 case 1: System.out.println(
 "Match and break from here");
 break; //break with no label
 case 2: System.out.println(
 "No match for this constant");
 break;
 }//end inner switch statement

 case 6: System.out.println("Case 6 in outer switch");
 default: System.out.println(
 "Default in outer switch");
 }//end outer switch statement

 System.out.println("Beyond switch statements");
 }//end main
}//End switch1 class.

After reviewing

switch1.java

, consider the same program
named

switch2.java

 shown in

Listing 7

,
which was modified to
use a labeled break.

The
outputs from both programs are shown in the comments at the beginning of the
program. By examining the second program, and comparing the output from the
second program with the first program, you should be able to see how the use of
the labeled break statement causes control to break all the way out of
the labeled switch statement.

Example 7.

/*File switch2.java
This is a Java application which uses a labeled break.
Note that the program uses nested switch statements.

See switch1.java for a comparison program which does not
use a labeled break.

The program displays the following output:

Match and break from here
Beyond switch statements
**/
class switch2 { //define the controlling class
 public static void main(String[] args){ //main method

 outerSwitch: switch(5){//labeled outer switch statement
 case 5: //execute the following switch statement
 //Note that the code for this case is not followed by
 // break. Therefore, except for the labeled break at
 // case 1, execution would fall through the case 6 and
 // the default as demonstrated in the program named
 // switch1. However, the use of the labeled break
 // causes control to break all the way out of the
 // labeled switch bypassing case 6 and the default.
 switch(1){ //inner switch statement
 case 1: System.out.println(
 "Match and break from here");
 break outerSwitch; //break with label
 case 2: System.out.println(
 "No match for this constant");
 break;
 }//end inner switch statement

 case 6: System.out.println(
 "Case 6 in outer switch");
 default: System.out.println("Default in outer switch");
 }//end outer switch statement

 System.out.println("Beyond switch statements");
 }//end main
}//End switch1 class.

The modified program in

Listing 7

 uses a labeled break statement
in the code group for

case 1

 whereas the original program in

Listing 6

 has an unlabeled break in that position.

By comparing the output from this program with the output from the
previous program, you can see that execution of the labeled break
statement caused control to break all the way out of the labeled
switch statement completely bypassing

case 6

 and default.

As you can see from examining the output, the labeled break
statement causes the program to break all the way out of
the switch statement which bears a matching label.

A similar situation exists when a labeled break is used in
nested loops with one of the enclosing outer loops being labeled. Control will
break out of the enclosing loop to which the labeled break refers.
It will be left as an exercise for the student to demonstrate this behavior to
his or her satisfaction.

Labeled continue statements

Now consider use of the labeled continue statement. A

continue

 statement can only be used in a loop; it cannot be used in a
switch. The behavior of a labeled continue statement can be
described as follows: "Terminate the current iteration and continue
with the next iteration of the loop to which the label refers."

Again, it will be left as an exercise for the student to demonstrate this
behavior to his or her satisfaction.

The
return statement

Use of the return statement

Java supports the use of the

return

statement to terminate a method and

(optionally)

 return a value to
the calling method.

The return type

The type of value returned must match the type
of the declared return value for the method.

The void return type

If the return value is declared as

void

, you can use
the syntax shown in

Figure 8

 to terminate the method.

(You can also simply allow the
method to run out of statements to execute.)

	

return;

							

Figure 8.

An empty return statement.

An empty return statement.

Returning a value

If the method returns a value, follow the word
return with an expression

(or constant)

 that evaluates to the value
being returned as shown in

Figure 9

.

	

return x+y;

							

Figure 9.

Returning a value from a 				method.

Returning a value from a 				method.

Return by value only

You are allowed to return only by

value

.
In the case of primitive types, this returns a copy of the returned item. In the
case of objects, returning by value returns a copy of the object's reference.

What you can do with a copy the object's reference

Having a copy of the reference is just as good as
having the original reference. A copy of the reference gives you access to the
object.

When Java objects are destroyed

All objects in Java are stored in dynamic memory
and that memory is not overwritten until all references to that memory cease
to exist.

Java uses a garbage collector running on a background thread to reclaim
memory from objects that have become

eligible for garbage collection

.

An object becomes eligible for garbage collection when there are no longer
any variables, array elements, or similar storage locations containing a
reference to the object. In other words, it becomes eligible when there is no
way for the program code to find a reference to the object.

Exception handling

Exception handling is a process that modifies the flow of control of
a program, so it merits being mentioned in this module. However, it is a fairly
complex topic, which will be discussed in detail in
future modules.

Suffice it at this point to say that whenever an exception is detected,
control is transferred to exception handler code if such code has been provided. Otherwise, the program will terminate. Thus,
the exception handling system merits being mentioned in discussions regarding flow
of control.

5.

Looking ahead

As you approach the end of this group of

Programming Fundamentals

modules, you should be preparing yourself for the more challenging ITSE 2321 OOP
tracks identified below:

 	

Java OOP: The Guzdial-Ericson
	Multimedia Class Library

	

Java OOP: Objects and
	Encapsulation

6.

Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

 	
Module name: Jb0230: Java OOP: Flow of Control

	
File: Jb0230.htm

	
Originally published: 1997

	
Published at cnx.org: November 24, 2012

Disclaimers:

Financial

: Although the Connexions
site makes it possible for you to download a PDF file for this
module at no charge, and also makes it possible for you to
purchase a pre-printed version of the PDF file, you should be
aware that some of the HTML elements in this module may not translate well into
PDF.

I also want you to know that, I receive no financial compensation from the Connexions website even if you purchase
	the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle books, and
				placed them for sale on Amazon.com showing me as the author. I
				neither receive compensation for those sales nor do I know who does
				receive compensation. If you purchase such a book, please be
				aware that it is a copy of a module that is freely
				available on cnx.org and that it was made and published without
				my prior knowledge.

Affiliation

: I am a professor of Computer Information
	Technology at Austin Community College in Austin, TX.
	

-end-

content/cover.png
Jb0230: Java
OOP: Flow of
Control

