
Connexions module: m45214 1

Jb0240: Java OOP: Arrays and Strings
∗

Richard Baldwin

This work is produced by The Connexions Project and licensed under the

Creative Commons Attribution License †

Abstract

This module takes a preliminary look at arrays and strings. More in-depth discussions will be provided

in future modules.

1 Table of Contents

• Preface (p. 1)

· Viewing tip (p. 2)

* Figures (p. 2)
* Listings (p. 2)

• Introduction (p. 2)
• Arrays (p. 2)
• Arrays of Objects (p. 8)
• Strings (p. 10)

· String Concatenation (p. 11)
· Arrays of String References (p. 12)

• Run the programs (p. 13)
• Looking ahead (p. 13)
• Miscellaneous (p. 13)

2 Preface

This module takes a preliminary look at arrays and strings. More in-depth discussions will be provided in
future modules. For example, you will �nd a more in-depth discussions of array objects in the following
modules:

• Java OOP: Array Objects, Part 1 1

• Java OOP: Array Objects, Part 2 2

• Java OOP: Array Objects, Part 3 3

∗Version 1.3: Nov 25, 2012 10:45 pm -0600
†http://creativecommons.org/licenses/by/3.0/
1http://cnx.org/content/m44198
2http://cnx.org/content/m44199
3http://cnx.org/content/m44200

http://cnx.org/content/m45214/1.3/

Connexions module: m45214 2

2.1 Viewing tip

I recommend that you open another copy of this module in a separate browser window and use the following
links to easily �nd and view the �gures and listings while you are reading about them.

2.1.1 Figures

• Figure 1 (p. 3) . Formats for declaring a reference variable for an array object.
• Figure 2 (p. 3) . Allocating memory for the array object.
• Figure 3 (p. 4) . Declaration and instantiation can be separated.
• Figure 4 (p. 4) . General syntax for combining declaration and instantiation.
• Figure 5 (p. 5) . An example of array indexing syntax.
• Figure 6 (p. 5) . The use of the length property in the conditional clause of a for loop.
• Figure 7 (p. 11) . A string literal.
• Figure 8 (p. 11) . String concatenation.
• Figure 9 (p. 12) . Declaring and instantiating a String array.
• Figure 10 (p. 12) . Allocating memory to contain the String objects.

2.1.2 Listings

• Listing 1 (p. 6) . The program named array01.
• Listing 2 (p. 7) . The program named array02.
• Listing 3 (p. 9) . The program named array03.

3 Introduction

The �rst step

The �rst step in learning to use a new programming language is usually to learn the foundation concepts
such as variables, types, expressions, �ow-of-control, arrays, strings, etc. This module concentrates on arrays
and strings.

Array and String types

Java provides a type for both arrays and strings from which objects of the speci�c type can be instantiated.
Once instantiated, the methods belonging to those types can be called by way of the object.

4 Arrays

Arrays and Strings

Java has a true array type and a true String type with protective features to prevent your program
from writing outside the memory bounds of the array object or the String object. Arrays and strings are
true objects.

Declaring an array

You must declare an array before you can use it. (More properly, you must declare a reference variable
to hold a reference to the array object.) In declaring the array, you must provide two important pieces of
information:

• the name of a variable to hold a reference to the array object
• the type of data to be stored in the elements of the array object

Di�erent declaration formats

A reference variable capable of holding a reference to an array object can be declared using either format
shown in Figure 1 (p. 3) .

http://cnx.org/content/m45214/1.3/

Connexions module: m45214 3

Formats for declaring a reference variable for an array object.

int[] myArray;

int myArray[];

Figure 1: Formats for declaring a reference variable for an array object.

Declaration does not allocate memory

As with other objects, the declaration of the reference variable does not allocate memory to contain the
array data. Rather it simply allocates memory to contain a reference to the array.

Allocating memory for the array object

Memory to contain the array object must be allocated from dynamic memory using statements such as
those shown in Figure 2 (p. 3) .

Allocating memory for the array object.

int[] myArrayX = new int[15];

int myArrayY[] = new int[25];

int[] myArrayZ = {3,4,5};

Figure 2: Allocating memory for the array object.

The statements in Figure 2 (p. 3) simultaneously declare the reference variable and cause memory to be
allocated to contain the array.

Also note that the last statement in Figure 2 (p. 3) is di�erent from the �rst two statements. This syntax
not only sets aside the memory for the array object, the elements in the array are initialized by evaluating
the expressions shown in the coma-separated list inside the curly brackets.

On the other hand, the array elements in the �rst two statements in Figure 2 (p. 3) are automatically
initialized with the default value for the type.

Declaration and allocation can be separated

It is not necessary to combine these two processes. You can execute one statement to declare the reference

http://cnx.org/content/m45214/1.3/

Connexions module: m45214 4

variable and another statement to cause the array object to be instantiated some time later in the program
as shown in Figure 3 (p. 4) .

Declaration and instantiation can be separated.

int[] myArray;

. . .

myArray = new int[25];

Figure 3: Declaration and instantiation can be separated.

Causing memory to be set aside to contain the array object is commonly referred to as instantiating the
array object (creating an instance of the array object) .

If you prefer to declare the reference variable and instantiate the array object at di�erent points in your
program, you can use the syntax shown in Figure 3 (p. 4) . This pattern is very similar to the declaration
and instantiation of all objects.

General syntax for combining declaration and instantiation

The general syntax for declaring and instantiating an array object is shown in Figure 4 (p. 4) .

General syntax for combining declaration and instantiation.

typeOfElements[] nameOfRefVariable =

new typeOfElements[sizeOfArray]

Figure 4: General syntax for combining declaration and instantiation.

Accessing array elements

Having instantiated an array object, you can access the elements of the array using indexing syntax that
is similar to many other programming languages. An example is shown in Figure 5 (p. 5) .

http://cnx.org/content/m45214/1.3/

Connexions module: m45214 5

An example of array indexing syntax.

myArray[5] = 6;

myVar = myArray[5];

Figure 5: An example of array indexing syntax.

The value of the �rst index

Array indices always begin with 0.
The length property of an array

The code fragment in Figure 6 (p. 5) illustrates another interesting aspect of arrays. (Note the use of
length in the conditional clause of the for loop.)

The use of the length property in the conditional clause of a for loop.

for(int cnt = 0; cnt < myArray.length; cnt++)

myArray[cnt] = cnt;

Figure 6: The use of the length property in the conditional clause of a for loop.

All array objects have a length property that can be accessed to determine the number of elements in
the array. (The number of elements cannot change once the array object is instantiated.)

Types of data that you can store in an array object

Array elements can contain any Java data type including primitive values and references to ordinary
objects or other array objects.

Constructing multi-dimensional arrays

All array objects contains a one-dimensional array structure. You can create multi-dimensional arrays
by causing the elements in one array object to contain references to other array objects. In e�ect, you can
create a tree structure of array objects that behaves like a multi-dimensional array.

Odd-shaped multi-dimensional arrays

http://cnx.org/content/m45214/1.3/

Connexions module: m45214 6

The program array01 shown in Listing 1 (p. 6) illustrates an interesting aspect of the Java arrays. Java
can produce multi-dimensional arrays that can be thought of as an array of arrays. However, the secondary
arrays need not all be of the same size.

In the program shown in Listing 1 (p. 6) , a two-dimensional array of integers is declared and instantiated
with the primary size (size of the �rst dimension) being three. The sizes of the secondary dimensions (sizes
of each of the sub-arrays) is 2, 3, and 4 respectively.

Can declare the size of secondary dimension later

When declaring a two-dimensional array, it is not necessary to declare the size of the secondary dimension
when the primary array is instantiated. Declaration of the size of each sub-array can be deferred until later
as illustrated in this program.

Accessing an array out-of-bounds

This program also illustrates the result of attempting to access an element that is out-of-bounds. Java
protects you from such programming errors.

ArrayIndexOutOfBoundsException

An exception occurs if you attempt to access out-of-bounds, as shown in the program in in Listing 1 (p.
6) .

In this case, the exception was simply allowed to cause the program to terminate. The exception could
have been caught and processed by an exception handler, a concept that will be explored in a future module.

The program named array01

The entire program is shown in Listing 1 (p. 6) . The output from the program is shown in the comments
at the top of the listing.

Listing 1: The program named array01.

/*File array01.java Copyright 1997, R.G.Baldwin

Illustrates creation and manipulation of two-dimensional

array with the sub arrays being of different lengths.

Also illustrates detection of exception when an attempt is

made to store a value out of the array bounds.

This program produces the following output:

00

012

0246

Attempt to access array out of bounds

java.lang.ArrayIndexOutOfBoundsException:

at array01.main(array01.java: 47)

**/

class array01 { //define the controlling class

public static void main(String[] args){ //main method

//Declare a two-dimensional array with a size of 3 on

// the primary dimension but with different sizes on

// the secondary dimension.

//Secondary size not specified initially

int[][] myArray = new int[3][];

myArray[0] = new int[2];//secondary size is 2

myArray[1] = new int[3];//secondary size is 3

myArray[2] = new int[4];//secondary size is 4

http://cnx.org/content/m45214/1.3/

Connexions module: m45214 7

//Fill the array with data

for(int i = 0; i < 3; i++){

for(int j = 0; j < myArray[i].length; j++){

myArray[i][j] = i * j;

}//end inner loop

}//end outer loop

//Display data in the array

for(int i = 0; i < 3; i++){

for(int j = 0; j < myArray[i].length; j++){

System.out.print(myArray[i][j]);

}//end inner loop

System.out.println();

}//end outer loop

//Attempt to access an out-of-bounds array element

System.out.println(

"Attempt to access array out of bounds");

myArray[4][0] = 7;

//The above statement produces an ArrayIndexOutOfBounds

// exception.

}//end main

}//End array01 class.

Assigning one array to another array � be careful

Java allows you to assign one array to another. You must be aware, however, that when you do this, you
are simply making another copy of the reference to the same data in memory.

Then you simply have two references to the same data in memory, which is often not a good idea. This
is illustrated in the program named array02 shown in Listing 2 (p. 7) .

Listing 2: The program named array02.

/*File array02.java Copyright 1997, R.G.Baldwin

Illustrates that when you assign one array to another

array, you end up with two references to the same array.

The output from running this program is:

firstArray contents

0 1 2

secondArray contents

0 1 2

Change a value in firstArray and display both again

firstArray contents

0 10 2

secondArray contents

0 10 2

**/

class array02 { //define the controlling class

http://cnx.org/content/m45214/1.3/

Connexions module: m45214 8

int[] firstArray;

int[] secondArray;

array02() {//constructor

firstArray = new int[3];

for(int cnt = 0; cnt < 3; cnt++) firstArray[cnt] = cnt;

secondArray = new int[3];

secondArray = firstArray;

}//end constructor

public static void main(String[] args){//main method

array02 obj = new array02();

System.out.println("firstArray contents");

for(int cnt = 0; cnt < 3; cnt++)

System.out.print(obj.firstArray[cnt] + " ");

System.out.println();

System.out.println("secondArray contents");

for(int cnt = 0; cnt < 3; cnt++)

System.out.print(obj.secondArray[cnt] + " ");

System.out.println();

System.out.println(

"Change value in firstArray and display both again");

obj.firstArray[1] = 10;

System.out.println("firstArray contents");

for(int cnt = 0; cnt < 3; cnt++)

System.out.print(obj.firstArray[cnt] + " ");

System.out.println();

System.out.println("secondArray contents");

for(int cnt = 0; cnt < 3; cnt++)

System.out.print(obj.secondArray[cnt] + " ");

System.out.println();

}//end main

}//End array02 class.

5 Arrays of Objects

An array of objects really isn't an array of objects

There is another subtle issue that you need to come to grips with before we leave our discussion of arrays.
In particular, when you create an array of objects, it really isn't an array of objects.

Rather, it is an array of object references (or null) . When you assign primitive values to the elements
in an array object, the actual primitive values are stored in the elements of the array.

However, when you assign objects to the elements in an array , the actual objects aren't actually stored
in the array elements. Rather, the objects are stored somewhere else in memory. The elements in the array

http://cnx.org/content/m45214/1.3/

Connexions module: m45214 9

contain references to those objects.
All the elements in an array of objects need not be of the same actual type

The fact that the array is simply an array of reference variables has some interesting rami�cations. For
example, it isn't necessary that all the elements in the array be of the same type, provided the reference
variables are of a type that will allow them to refer to all the di�erent types of objects.

For example, if you declare the array to contain references of type Object , those references can refer
to any type of object (including array objects) because a reference of type Object can be used to refer
to any object.

You can do similar things using interface types. I will discuss interface types in a future module.
Often need to downcast to use an Object reference

If you store all of your references as type Object , you will often need to downcast the references to
the true type before you can use them to access the instance variables and instance methods of the objects.

Doing the downcast no great challenge as long as you can decide what type to downcast them to.
The Vector class

There is a class named Vector that takes advantage of this capability. An object of type Vector is
a self-expanding array of reference variables of type Object . You can use an object of type Vector to
manage a group of objects of any type, either all of the same type, or mixed.

(Note that you cannot store primitive values in elements of a non-primitive or reference type. If you
need to do that, you will need to wrap your primitive values in an object of a wrapper class as discussed in
an earlier module.)

A sample program using the Date class

The sample program, named array03 and shown in Listing 3 (p. 9) isn't quite that complicated. This
program behaves as follows:

• Declare a reference variable to an array of type Date . (The actual type of the variable is Date[].)
• Instantiate a three-element array of reference variables of type Date .
• Display the contents of the array elements and con�rm that they are all null as they should be.

(When created using this syntax, new array elements contain the default value, which is null for
reference types.)

• Instantiate three objects of type Date and store the references to those objects in the three elements
of the array.

• Access the references from the array and use them to display the contents of the individual Date

objects.

As you might expect from the name of the class, each object contains information about the date.

Listing 3: The program named Array03.

/*File array03.java Copyright 1997, R.G.Baldwin

Illustrates use of arrays with objects.

Illustrates that "an array of objects" is not really an

array of objects, but rather is an array of references

to objects. The objects are not stored in the array,

but rather are stored somewhere else in memory and the

references in the array elements refer to them.

The output from running this program is:

myArrayOfRefs contains

http://cnx.org/content/m45214/1.3/

Connexions module: m45214 10

null

null

null

myArrayOfRefs contains

Sat Dec 20 16:56:34 CST 1997

Sat Dec 20 16:56:34 CST 1997

Sat Dec 20 16:56:34 CST 1997

**/

import java.util.*;

class array03 { //define the controlling class

Date[] myArrayOfRefs; //Declare reference to the array

array03() {//constructor

//Instantiate the array of three reference variables

// of type Date. They will be initialized to null.

myArrayOfRefs = new Date[3];

//Display the contents of the array.

System.out.println("myArrayOfRefs contains");

for(int cnt = 0; cnt < 3; cnt++)

System.out.println(this.myArrayOfRefs[cnt]);

System.out.println();

//Instantiate three objects and assign references to

// those three objects to the three reference

// variables in the array.

for(int cnt = 0; cnt < 3; cnt++)

myArrayOfRefs[cnt] = new Date();

}//end constructor

//---//

public static void main(String[] args){//main method

array03 obj = new array03();

System.out.println("myArrayOfRefs contains");

for(int cnt = 0; cnt < 3; cnt++)

System.out.println(obj.myArrayOfRefs[cnt]);

System.out.println();

}//end main

}//End array03 class.

6 Strings

What is a string?

A string is commonly considered to be a sequence of characters stored in memory and accessible as a
unit.

Java implements strings using the String class and the StringBu�er class.

http://cnx.org/content/m45214/1.3/

Connexions module: m45214 11

What is a string literal?

Java considers a series of characters surrounded by quotation marks as shown in Figure 7 (p. 11) to be
a string literal.

A string literal.

"This is a string literal in Java."

Figure 7: A string literal.

This is just an introduction to strings

A major section of a future module will be devoted to the topic of strings, so this discussion will be brief.
String objects cannot be modi�ed

String objects cannot be changed once they have been created. If you have that need, use the
StringBu�er class instead.

StringBu�er objects can be used to create and manipulate character data as the program executes.

6.1 String Concatenation

Java supports string concatenation using the overloaded + operator as shown in Figure 8 (p. 11) .

String concatenation.

"My variable has a value of " + myVar

+ " at this point in the program."

Figure 8: String concatenation.

Coercion of an operand to type String

The overloaded + operator is used to concatenate strings. If either operand is type String , the other
operand is coerced into type String and the two strings are concatenated.

Therefore, in addition to concatenating the strings, Java also converts values of other types, such as
myVar in Figure 8 (p. 11) , to character-string format in the process.

http://cnx.org/content/m45214/1.3/

Connexions module: m45214 12

6.2 Arrays of String References

Declaring and instantiating a String array

The statement in Figure 9 (p. 12) declares and instantiates an array of references to �ve String objects.

Declaring and instantiating a String array.

String[] myArrayOfStringReferences = new String[5];

Figure 9: Declaring and instantiating a String array.

No string data at this point

Note however, that this array doesn't contain the actual String objects. Rather, it simply sets aside
memory for storage of �ve references of type String . (The array elements are automatically initialized to
null.) No memory has been set aside to store the characters that make up the individual String objects.
You must allocate the memory for the actual String objects separately using code similar to the code
shown in Figure 10 (p. 12) .

Allocating memory to contain the String objects.

myArrayOfStringReferences[0] = new String(

"This is the first string.");

myArrayOfStringReferences[1] = new String(

"This is the second string.");

Figure 10: Allocating memory to contain the String objects.

The new operator is not required for String class

Although it was used in Figure 10 (p. 12) , the new operator is not required to instantiate an object
of type String . I will discuss the ability of Java to instantiate objects of type String without the
requirement to use the new operator in a future module.

http://cnx.org/content/m45214/1.3/

Connexions module: m45214 13

7 Run the programs

I encourage you to copy the code from Listing 1 (p. 6) , Listing 2 (p. 7) , and Listing 3 (p. 9) . Compile the
code and execute it. Experiment with the code, making changes, and observing the results of your changes.
Make certain that you can explain why your changes behave as they do.

8 Looking ahead

As you approach the end of this group of Programming Fundamentals modules, you should be preparing
yourself for the more challenging ITSE 2321 OOP tracks identi�ed below:

• Java OOP: The Guzdial-Ericson Multimedia Class Library 4

• Java OOP: Objects and Encapsulation 5

9 Miscellaneous

This section contains a variety of miscellaneous information.

note: Housekeeping material

• Module name: Jb0240: Java OOP: Arrays and Strings
• File: Jb0240.htm
• Originally published: 1997
• Published at cnx.org: November 25, 2012

note: Disclaimers: Financial : Although the Connexions site makes it possible for you to
download a PDF �le for this module at no charge, and also makes it possible for you to purchase a
pre-printed version of the PDF �le, you should be aware that some of the HTML elements in this
module may not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

4http://cnx.org/content/m44148
5http://cnx.org/content/m44153

http://cnx.org/content/m45214/1.3/

