
Connexions module: m45276 1

Ap0070: Self-assessment, Method

Overloading
∗

Richard Baldwin

This work is produced by The Connexions Project and licensed under the

Creative Commons Attribution License †

Abstract

Part of a self-assessment test designed to help you determine how much you know about method

overloading in Java.

1 Table of Contents

• Preface (p. 1)
• Questions (p. 1)

· 1 (p. 1) , 2 (p. 2) , 3 (p. 3) , 4 (p. 4) , 5 (p. 5) , 6 (p. 6) , 7 (p. 7) , 8 (p. 7)

• Listings (p. 8)
• Miscellaneous (p. 8)
• Answers (p. 9)

2 Preface

This module is part of a self-assessment test designed to help you determine how much you know about
object-oriented programming using Java.

The test consists of a series of questions with answers and explanations of the answers.
The questions and the answers are connected by hyperlinks to make it easy for you to navigate from the

question to the answer and back.
I recommend that you open another copy of this document in a separate browser window and use the

links to under Listings (p. 8) to easily �nd and view the listings while you are reading about them.

3 Questions

3.1 Question 1 .

What output is produced by the program shown in Listing 1 (p. 2) ?

• A. Compiler Error
• B. Runtime Error

∗Version 1.3: Dec 4, 2012 2:04 pm -0600
†http://creativecommons.org/licenses/by/3.0/

http://cnx.org/content/m45276/1.3/



Connexions module: m45276 2

• C. 9 17.64
• D. None of the above

Listing 1: Listing for Question 1.

public class Ap079{

public static void main(

String args[]){

new Worker().doOverLoad();

}//end main()

}//end class definition

class Worker{

public void doOverLoad(){

int x = 3;

double y = 4.2;

System.out.println(square(x) + " "

+ square(y));

}//end doOverLoad()

public int square(int y){

return y*y;

}//end square()

public double square(double y){

return y*y;

}//end square()

}// end class

Answer and Explanation (p. 15)

3.2 Question 2

What output is produced by the program shown in Listing 2 (p. 2) ?

• A. Compiler Error
• B. Runtime Error
• C. �oat 9.0 double 17.64
• D. None of the above

Listing 2: Listing for Question 2.

public class Ap080{

public static void main(

String args[]){

new Worker().doOverLoad();

}//end main()

}//end class definition

http://cnx.org/content/m45276/1.3/



Connexions module: m45276 3

class Worker{

public void doOverLoad(){

int x = 3;

double y = 4.2;

System.out.print(square(x) + " ");

System.out.print(square(y));

System.out.println();

}//end doOverLoad()

public float square(float y){

System.out.print("float ");

return y*y;

}//end square()

public double square(double y){

System.out.print("double ");

return y*y;

}//end square()

}// end class

Answer and Explanation (p. 14)

3.3 Question 3

What output is produced by the program shown in Listing 3 (p. 3) ?

• A. Compiler Error
• B. Runtime Error
• C. 10 17.64
• D. None of the above

Listing 3: Listing for Question 3.

public class Ap081{

public static void main(

String args[]){

new Worker().doOverLoad();

}//end main()

}//end class definition

class Worker{

public void doOverLoad(){

double w = 3.2;

double x = 4.2;

int y = square(w);

double z = square(x);

System.out.println(y + " " + z);

http://cnx.org/content/m45276/1.3/



Connexions module: m45276 4

}//end doOverLoad()

public int square(double y){

return (int)(y*y);

}//end square()

public double square(double y){

return y*y;

}//end square()

}// end class

Answer and Explanation (p. 13)

3.4 Question 4

What output is produced by the program shown in Listing 4 (p. 4) ?

• A. Compiler Error
• B. Runtime Error
• C. 9 17.64
• D. None of the above

Listing 4: Listing for Question 4.

public class Ap083{

public static void main(

String args[]){

new Worker().doOverLoad();

}//end main()

}//end class definition

class Worker{

public void doOverLoad(){

int w = 3;

double x = 4.2;

System.out.println(

new Subclass().square(w) + " "

+ new Subclass().square(x));

}//end doOverLoad()

}// end class

class Superclass{

public double square(double y){

return y*y;

}//end square()

}//end class Superclass

class Subclass extends Superclass{

public int square(int y){

http://cnx.org/content/m45276/1.3/



Connexions module: m45276 5

return y*y;

}//end square()

}//end class Subclass

Answer and Explanation (p. 13)

3.5 Question 5

Which of the following is produced by the program shown in Listing 5 (p. 5) ?

note:

A. Compiler Error

B. Runtime Error

C. float 2.14748365E9

float 9.223372E18

double 4.2

D. None of the above

Listing 5: Listing for Question 5.

public class Ap084{

public static void main(

String args[]){

new Worker().doOverLoad();

}//end main()

}//end class definition

class Worker{

public void doOverLoad(){

int x = 2147483647;

square(x);

long y = 9223372036854775807L;

square(y);

double z = 4.2;

square(z);

System.out.println();

}//end doOverLoad()

public void square(float y){

System.out.println("float" + " " +

y + " ");

}//end square()

public void square(double y){

System.out.println("double" + " " +

y + " ");

http://cnx.org/content/m45276/1.3/



Connexions module: m45276 6

}//end square()

}// end class

Answer and Explanation (p. 11)

3.6 Question 6

What output is produced by the program shown in Listing 6 (p. 6) ?

• A. Compiler Error
• B. Runtime Error
• C. Test DumIntfc
• D. None of the above

Listing 6: Listing for Question 6.

public class Ap085{

public static void main(

String args[]){

new Worker().doOverLoad();

}//end main()

}//end class definition

class Worker{

public void doOverLoad(){

Test a = new Test();

DumIntfc b = new Test();

overLoadMthd(a);

overLoadMthd(b);

System.out.println();

}//end doOverLoad()

public void overLoadMthd(Test x){

System.out.print("Test ");

}//end overLoadMthd

public void overLoadMthd(DumIntfc x){

System.out.print("DumIntfc ");

}//end overLoadMthd

}// end class

interface DumIntfc{

}//end DumIntfc

class Test implements DumIntfc{

}//end class Test

Answer and Explanation (p. 10)

http://cnx.org/content/m45276/1.3/



Connexions module: m45276 7

3.7 Question 7

What output is produced by the program shown in Listing 7 (p. 7) ?

• A. Compiler Error
• B. Runtime Error
• C. Test Object
• D. None of the above

Listing 7: Listing for Question 7.

public class Ap086{

public static void main(

String args[]){

new Worker().doOverLoad();

}//end main()

}//end class definition

class Worker{

public void doOverLoad(){

Test a = new Test();

Object b = new Test();

overLoadMthd(a);

overLoadMthd(b);

System.out.println();

}//end doOverLoad()

public void overLoadMthd(Test x){

System.out.print("Test ");

}//end overLoadMthd

public void overLoadMthd(Object x){

System.out.print("Object ");

}//end overLoadMthd

}// end class

class Test{

}//end class Test

Answer and Explanation (p. 10)

3.8 Question 8

What output is produced by the program shown in Listing 8 (p. 7) ?

• A. Compiler Error
• B. Runtime Error
• C. SubC SuperC
• D. None of the above

Listing 8: Listing for Question 8.

http://cnx.org/content/m45276/1.3/



Connexions module: m45276 8

public class Ap087{

public static void main(

String args[]){

new Worker().doOverLoad();

}//end main()

}//end class definition

class Worker{

public void doOverLoad(){

SubC a = new SubC();

SuperC b = new SubC();

SubC obj = new SubC();

obj.overLoadMthd(a);

obj.overLoadMthd(b);

System.out.println();

}//end doOverLoad()

}// end class

class SuperC{

public void overLoadMthd(SuperC x){

System.out.print("SuperC ");

}//end overLoadMthd

}//end SuperC

class SubC extends SuperC{

public void overLoadMthd(SubC x){

System.out.print("SubC ");

}//end overLoadMthd

}//end class SubC

Answer and Explanation (p. 9)

4 Listings

I recommend that you open another copy of this document in a separate browser window and use the
following links to easily �nd and view the listings while you are reading about them.

• Listing 1 (p. 2) . Listing for Question 1.
• Listing 2 (p. 2) . Listing for Question 2.
• Listing 3 (p. 3) . Listing for Question 3.
• Listing 4 (p. 4) . Listing for Question 4.
• Listing 5 (p. 5) . Listing for Question 5.
• Listing 6 (p. 6) . Listing for Question 6.
• Listing 7 (p. 7) . Listing for Question 7.
• Listing 8 (p. 7) . Listing for Question 8.

5 Miscellaneous

This section contains a variety of miscellaneous information.

http://cnx.org/content/m45276/1.3/



Connexions module: m45276 9

note: Housekeeping material

• Module name: Ap0070: Self-assessment, Method Overloading
• File: Ap0070.htm
• Originally published: 2002
• Published at cnx.org: December 4, 2012

note: Disclaimers: Financial : Although the Connexions site makes it possible for you to
download a PDF �le for this module at no charge, and also makes it possible for you to purchase a
pre-printed version of the PDF �le, you should be aware that some of the HTML elements in this
module may not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

6 Answers

6.1 Answer 8

C. SubC SuperC

6.1.1 Explanation 8

While admittedly a little convoluted, this is another relatively straightforward application of method over-
loading using types from the class hierarchy.

Type SubC , SuperC , or Object?
This method de�nes a class named SuperC , which extends Object , and a class named SubC ,

which extends SuperC . Therefore, an object instantiated from the class named SubC can be treated
as any of the following types: SubC , SuperC , or Object .

Two overloaded methods in di�erent classes
Two overloaded methods named overLoadMthd are de�ned in two classes in the inheritance hierarchy.

The class named SuperC de�nes a version that requires an incoming parameter of type SuperC . The
class named SubC de�nes a version that requires an incoming parameter of type SubC . When called,
each of these overloaded methods prints the type of its formal argument.

Two objects of type SubC
The program instantiates two objects of the SubC class, storing the reference to one of them in a

reference variable of type SubC , and storing the reference to the other in a reference variable of type
SuperC .

Call the overloaded method twice
The next step is to call the overloaded method named overLoadMthd twice in succession, passing

each of the reference variables of type SubC and SuperC to the method.
Instance methods require an object
Because the two versions of the overloaded method are instance methods, it is necessary to have an object

on which to call the methods. This is accomplished by instantiating a new object of the SubC class, storing

http://cnx.org/content/m45276/1.3/



Connexions module: m45276 10

the reference to that object in a reference variable named obj , and calling the overloaded method on that
reference.

Overloaded methods not in same class
The important point here is that the two versions of the overloaded method were not de�ned in the

same class. Rather, they were de�ned in two di�erent classes in the inheritance hierarchy. However, they
were de�ned in such a way that both overloaded versions were contained as instance methods in an object
instantiated from the class named SubC .

No surprises
There were no surprises. When the overloaded method was called twice in succession, passing the two

di�erent reference variables as parameters, the output shows that the version that was called in each case
had a formal argument type that matched the type of the parameter that was passed to the method.

Back to Question 8 (p. 7)

6.2 Answer 7

C. Test Object

6.2.1 Explanation 7

Another straightforward application
This is another straightforward application of method overloading, which produces no surprises.
This program de�nes a new class named Test , which extends the Object class by default. This

means that an object instantiated from the class named Test can be treated either as type Test , or as
type Object .

The program de�nes two overloaded methods named overLoadMthd . One requires an incoming
parameter of type Test . The other requires an incoming parameter of type Object . When called, each
of these methods prints the type of its incoming parameter.

The program instantiates two di�erent objects of the class Test , storing a reference to one of them
in a reference variable of type Test , and storing a reference to the other in a reference variable of type
Object .

No surprises here
Then it calls the overloaded overLoadMthd method twice in succession, passing the reference of type

Test during the �rst call, and passing the reference of type Object during the second call.
As mentioned above, the output produces no surprises. The output indicates that the method selected for

execution during each call is the method with the formal argument type that matches the type of parameter
passed to the method.

Back to Question 7 (p. 7)

6.3 Answer 6

C. Test DumIntfc

6.3.1 Explanation 6

Overloaded methods with reference parameters
This is a fairly straightforward application of method overloading. However, rather than requiring method

parameters of primitive types as in the previous questions in this module, the overloaded methods in this
program require incoming parameters of class and interface types respectively.

Type Test or type DumIntfc?
The program de�nes an interface named DumIntfc and de�nes a class named Test that implements

that interface. The result is that an object instantiated from the Test class can be treated either as type
Test or as type DumIntfc (it could also be treated as type Object as well) .

http://cnx.org/content/m45276/1.3/



Connexions module: m45276 11

Two overloaded methods
The program de�nes two overloaded methods named overLoadMthd . One requires an incoming

parameter of type Test , and the other requires an incoming parameter of type DumIntfc . When
called, each of the overloaded methods prints a message indicating the type of its argument.

Two objects of the class Test
The program instantiates two objects of the class Test . It assigns one of the object's references to a

reference variable named a , which is declared to be of type Test .
The program assigns the other object's reference to a reference variable named b , which is declared to

be of type DumIntfc . (Remember, both objects were instantiated from the class Test .)
No surprises here
Then it calls the overloaded method named overLoadMthd twice in succession, passing �rst the

reference variable of type Test and then the reference variable of type DumIntfc .
The program output doesn't produce any surprises. When the reference variable of type Test is passed

as a parameter, the overloaded method requiring that type of parameter is selected for execution. When the
reference variable of type DumIntfc is passed as a parameter, the overloaded method requiring that type
of parameter is selected for execution.

Back to Question 6 (p. 6)

6.4 Answer 5

note:

C. float 2.14748365E9

float 9.223372E18

double 4.2

6.4.1 Explanation 5

Another subtle method selection issue
This program illustrates a subtle issue in the automatic selection of an overloaded method based on

assignment compatibility.
This program de�nes two overloaded methods named square . One requires an incoming parameter of

type �oat , and the other requires an incoming parameter of type double .
When called, each of these methods prints the type of its formal argument along with the value of the

incoming parameter as represented by its formal argument type. In other words, the value of the incoming
parameter is printed after it has been automatically converted to the formal argument type.

Printout identi�es the selected method
This printout makes it possible to determine which version is called for di�erent types of parameters. It

also makes it possible to determine the e�ect of the automatic conversion on the incoming parameter. What
we are going to see is that the conversion process can introduce serious accuracy problems.

Call the method three times
The square method is called three times in succession, passing values of type int , long , and

double during successive calls.
(Type long is a 64-bit integer type capable of storing integer values that are much larger than can

be stored in type int . The use of this type here is important for illustration of data corruption that
occurs through automatic type conversion.)

The third invocation of the square method, passing a double as a parameter, is not particularly
interesting. There is a version of square with a matching argument type, and everything behaves as would
be expected for this invocation. The interesting behavior occurs when the int and long values are passed
as parameters.

Passing an int parameter

http://cnx.org/content/m45276/1.3/



Connexions module: m45276 12

The �rst thing to note is the behavior of the program produced by the following code fragment.

note:

int x = 2147483647;

square(x);

The above fragment assigns a large integer value (2147483647)to the int variable and passes that variable
to the square method. This fragment produces the following output on the screen:

note:

float 2.14748365E9

As you can see, the system selected the overloaded method that requires an incoming parameter of type
�oat for execution in this case (rather than the version that requires type double ).

Conversion from int to �oat loses accuracy
Correspondingly, it converted the incoming int value to type �oat , losing one decimal digit of

accuracy in the process. (The original int value contained ten digits of accuracy. This was approximated
by a nine-digit �oat value with an exponent value of 9.)

This seems like an unfortunate choice of overloaded method. Selecting the other version that requires a
double parameter as input would not have resulted in any loss of accuracy.

A more dramatic case
Now, consider an even more dramatic case, as illustrated in the following fragment where a very large

long integer value(9223372036854775807) is passed to the square method.

note:

long y = 9223372036854775807L;

square(y);

The above code fragment produced the following output:

note:

float 9.223372E18

A very serious loss of accuracy
Again, unfortunately, the system selected the version of the square method that requires a �oat

parameter for execution. This caused the long integer to be converted to a �oat . As a result, the long
value containing 19 digits of accuracy was converted to an estimate consisting of only seven digits plus an
exponent. (Even if the overloaded square method requiring a double parameter had been selected,
the conversion process would have lost about three digits of accuracy, but that would have been much better
than losing twelve digits of accuracy.)

The moral to the story is ...
Don't assume that just because the system knows how to automatically convert your integer data to

�oating data, it will protect the integrity of your data. Oftentimes it won't.
To be really safe ...
To be really safe, whenever you need to convert either int or long types to �oating format, you should

write your code in such a way as to ensure that it will be converted to type double instead of type �oat
.

For example, the following modi�cation would solve the problem for the int data and would greatly
reduce the magnitude of the problem for the long data. Note the use of the (double) cast to force the
double version of the square method to be selected for execution.

http://cnx.org/content/m45276/1.3/



Connexions module: m45276 13

note:

int x = 2147483647;

square((double)x);

long y = 9223372036854775807L;

square((double)y);

The above modi�cation would cause the program to produce the following output:

note:

double 2.147483647E9

double 9.223372036854776E18

double 4.2

This output shows no loss of accuracy for the int value, and the loss of three digits of accuracy for the
long value.

(Because a long and a double both store their data in 64 bits, it is not possible to convert
a very large long value to a double value without some loss in accuracy, but even that is much
better than converting a 64-bit long value to a 32-bit �oat value.)

Back to Question 5 (p. 5)

6.5 Answer 4

C. 9 17.64

6.5.1 Explanation 4

When the square method is called on an object of the Subclass type passing an int as a parameter,
there is an exact match to the required parameter type of the square method de�ned in that class. Thus,
the method is properly selected and executed.

When the square method is called on an object of the Subclass type passing a double as a
parameter, the version of the square method de�ned in the Subclass type is not selected. The double
value is not assignment compatible with the required type of the parameter (an int is narrower than a
double ).

Having made that determination, the system continues searching for an overloaded method with a required
parameter that is either type double or assignment compatible with double . It �nds the version inherited
from Superclass that requires a double parameter and calls it.

The bottom line is, overloaded methods can occur up and down the inheritance hierarchy.
Back to Question 4 (p. 4)

6.6 Answer 3

A. Compiler Error

6.6.1 Explanation 3

Return type is not a di�erentiating feature
This is not a subtle issue. This program illustrates the important fact that the return type does not

di�erentiate between overloaded methods having the same name and formal argument list.
For a method to be overloaded, two or more versions of the method must have the same name and

di�erent formal arguments lists.
The return type can be the same, or it can be di�erent (it can even be void) . It doesn't matter.

http://cnx.org/content/m45276/1.3/



Connexions module: m45276 14

These two methods are not a valid overload
This program attempts to de�ne two methods named square , each of which requires a single incoming

parameter of type double . One of the methods casts its return value to type int and returns type int
. The other method returns type double .

The JDK 1.3 compiler produced the following error:

note:

Ap081.java:28: square(double) is already defined

in Worker

public double square(double y){

Back to Question 3 (p. 3)

6.7 Answer 2

C. �oat 9.0 double 17.64

6.7.1 Explanation 2

This program is a little more subtle
Once again, the program de�nes two overloaded methods named square . However, in this case, one

of the methods requires a single incoming parameter of type �oat and the other requires a single incoming
parameter of type double . (Su�ce it to say that the �oat type is similar to the double type, but
with less precision. It is a �oating type, not an integer type. The double type is a 64-bit �oating type
and the �oat type is a 32-bit �oating type.)

Passing a type int as a parameter
This program does not de�ne a method named square that requires an incoming parameter of type

int . However, the program calls the square method passing a value of type int as a parameter.
What happens to the int parameter?
The �rst question to ask is, will this cause one of the two overloaded methods to be called, or will it

cause a compiler error? The answer is that it will cause one of the overloaded methods to be called because
a value of type int is assignment compatible with both type �oat and type double .

Which overloaded method will be called?
Since the type int is assignment compatible with type �oat and also with type double , the next

question is, which of the two overloaded methods will be called when a value of type int is passed as a
parameter?

Learn through experimentation
I placed a print statement in each of the overloaded methods to display the type of that method's

argument on the screen when the method is called. By examining the output, we can see that the method
with the �oat parameter was called �rst (corresponding to the parameter of type int ). Then the
method with the double parameter was called (corresponding to the parameter of type double ).

Converted int to �oat
Thus, the system selected the overloaded method requiring an incoming parameter of type �oat when

the method was called passing an int as a parameter. The value of type int was automatically converted
to type �oat .

In this case, it wasn't too important which method was called to process the parameter of type int ,
because the two methods do essentially the same thing � compute and return the square of the incoming
value.

However, if the behavior of the two methods were di�erent from one another, it could make a lot of
di�erence, which one gets called on an assignment compatible basis. (Even in this case, it makes some

http://cnx.org/content/m45276/1.3/



Connexions module: m45276 15

di�erence. As we will see later, when a very large int value is converted to a �oat , there is some loss
in accuracy. However, when the same very large int value is converted to a double , there is no loss in
accuracy.)

Avoiding the problem
One way to avoid this kind of subtle issue is to avoid passing assignment-compatible values to overloaded

methods.
Passing assignment-compatible values to overloaded methods allows the system to resolve the issue

through automatic type conversion. Automatic type conversion doesn't always provide the best choice.
Using a cast to force your choice of method
Usually, you can cast the parameter values to a speci�c type before calling the method and force the

system to select your overloaded method of choice.
For example, in this problem, you could force the method with the double parameter to handle the

parameter of type int by using the following cast when the method named square is called:
square((double)x)
However, as we will see later, casting may not be the solution in every case.
Back to Question 2 (p. 2)

6.8 Answer 1

C. 9 17.64

6.8.1 Explanation 1

What is method overloading?
A rigorous de�nition of method overloading is very involved and won't be presented here. However, from

a practical viewpoint, a method is overloaded when two or more methods having the same name and di�erent
formal argument lists are de�ned in the class from which an object is instantiated, or are inherited into an
object by way of superclasses of that class.

How does the compiler select among overloaded methods?
The exact manner in which the system determines which method to call in each particular case is also

very involved. Basically, the system determines which of the overloaded methods to execute by matching
the types of parameters passed to the method to the types of arguments de�ned in the formal argument list.

Assignment compatible matching
However, there are a number of subtle issues that arise, particularly when there isn't an exact match. In

selecting the version of the method to call, Java supports the concept of an "assignment compatible" match
(or possibly more than one assignment compatible match) .

Brie�y, assignment compatibility means that it would be allowable to assign a value of the type that is
passed as a parameter to a variable whose type matches the speci�ed argument in the formal argument list.

Selecting the best match
According to Java Language Reference by Mark Grand,
"If more than one method is compatible with the given arguments, the method that most closely matches

the given parameters is selected. If the compiler cannot select one of the methods as a better match than
the others, the method selection process fails and the compiler issues an error message."

Understanding subtleties
If you plan to be a Java programmer, you must have some understanding of the subtle issues involving

overloaded methods, and the relationship between overloaded methods and overridden methods. Therefore,
the programs in this module will provide some of that information and discuss some of the subtle issues that
arise.

Even if you don't care about the subtle issues regarding method overloading, many of those issues really
involve automatic type conversion. You should study these questions to learn about the problems associated
with automatic type conversion.

http://cnx.org/content/m45276/1.3/



Connexions module: m45276 16

This program is straightforward
However, there isn't anything subtle about the program for Question 1 (p. 1) . This program de�nes two

overloaded methods named square . One requires a single incoming parameter of type int . The other
requires a single incoming parameter of type double . Each method calculates and returns the square of
the incoming parameter.

The program calls a method named square twice in succession, and displays the values returned by
those two invocations. In the �rst case, an int value is passed as a parameter. This causes the method
with the formal argument list of type int to be called.

In the second case, a double value is passed as a parameter. This causes the method with the formal
argument list of type double to be called.

Overloaded methods may have di�erent return types
Note in particular that the overloaded methods have di�erent return types. One method returns its value

as type int and the other returns its value as type double . This is re�ected in the output format for
the two return vales as shown below:

9 17.64
Back to Question 1 (p. 1)
-end-

http://cnx.org/content/m45276/1.3/


