Moments And Vanishing Wavelet Moments

Feng Qiao
Rachael Milam

This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 1.0.

Definition 1: k^{th} order moments of $f(t)$

$$m[k] = \int t^k f(t) \, dt$$

Definition 2: k^{th} order moments of $s(n)$

$$\mu[k] = \sum_{nn} n^k s[n]$$

Definition 3: Partial Moments

$$v(k, l) = \sum_{nn} (2n + l)^k s[2n + l]$$

Notation

- $m[k]$: scaling function moments
- $m_1[k]$: wavelet function moments
- $\mu[k]$: scaling filter moments
- $\mu_1[k]$: wavelet filter moments

Example 1
For a random variable x with a pdf $p(x)$, its mean value is

First order moment of $p(x)$

$$E[x] = \int x p(x) \, dx \quad (1)$$

If x is zero-mean, its variance is

Second order moment of $p(x)$

$$\text{Var}(x) = \int x^2 p(x) \, dx \quad (2)$$
Moments may have special meaning in physics and mechanics field.

Example 2

The centroid of an object with density \(\rho (r) \) is defined as

\[
C = \int r \rho (r) \, dr
\]

Its moment of inertia is defined as

\[
I = \int r^2 \rho (r) \, dr
\]

NOTE: The wavelet transform of a function \(f (t) \in V_j \) can be written as

\[
f (t) = \sum_{kk} c_{j0} (k) \phi_{j0,k} (t) + \sum_{kk} \sum_{j=j0}^{J-1} d_j (k) \psi_{j,k} (t)
\]

where \(c_{j0} = \langle f (t), \phi_{j0,k} (t) \rangle \) and \(d_j (k) = \langle f (t), \psi_{j,k} (t) \rangle \) are scaling coefficients and wavelet coefficients, respectively. If the signal \(f (t) \) is in polynomial form, the coefficients \(c \)'s and \(d \)'s are linear combination of different order moments.

If we can make the moments of wavelet function to be zero up to a certain order \(K - 1 \), for any polynomial with order lower than \(K \), all its wavelet coefficients will be zero, or be **vanishing**. The signal will then fall entirely into the scaling function space, or we can say the scaling function has power to represent polynomials of degree up to \(K - 1 \). Such a wavelet system is said to have **vanishing wavelet moments**.

Making a wavelet system to have vanishing wavelet moments up to order \(K - 1 \) is equivalent to putting regularity on its scaling filter, which is known as "\(K \)-regularity" of scaling filter.