Split-radix FFT Algorithms

Douglas L. Jones

This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 1.0†

Abstract

The split-radix FFT mixes radix-2 and radix-4 decompositions, yielding an algorithm with about one-third fewer multiplies than the radix-2 FFT. The split-radix FFT has lower complexity than the radix-4 or any higher-radix power-of-two FFT.

The split-radix algorithm, first clearly described and named by Duhamel and Hollman[2] in 1984, required fewer total multiply and add operations than any previous power-of-two algorithm. (Yavne[5] first derived essentially the same algorithm in 1968, but the description was so atypical that the work was largely neglected.) For a time many FFT experts thought it to be optimal in terms of total complexity, but even more efficient variations have more recently been discovered by Johnson and Frigo[4].

The split-radix algorithm can be derived by careful examination of the radix-2¹ and radix-4² flowgraphs as in Figure 1 below. While in most places the radix-4³ algorithm has fewer nontrivial twiddle factors, in some places the radix-2⁴ actually lacks twiddle factors present in the radix-4⁵ structure or those twiddle factors simplify to multiplication by \(-i\), which actually requires only additions. By mixing radix-2⁶ and radix-4⁷ computations appropriately, an algorithm of lower complexity than either can be derived.

†http://creativecommons.org/licenses/by/1.0
¹“Decimation-in-time (DIT) Radix-2 FFT” <http://cnx.org/content/m12016/latest/>
²“Radix-4 FFT Algorithms” <http://cnx.org/content/m12027/latest/>
³“Radix-4 FFT Algorithms” <http://cnx.org/content/m12027/latest/>
⁴”Decimation-in-time (DIT) Radix-2 FFT” <http://cnx.org/content/m12016/latest/>
⁵”Radix-4 FFT Algorithms” <http://cnx.org/content/m12027/latest/>
⁶”Decimation-in-time (DIT) Radix-2 FFT” <http://cnx.org/content/m12016/latest/>
⁷”Radix-4 FFT Algorithms” <http://cnx.org/content/m12027/latest/>
Motivation for split-radix algorithm

An alternative derivation notes that radix-2 butterflies of the form shown in Figure 2 can merge twiddle factors from two successive stages to eliminate one-third of them; hence, the split-radix algorithm requires only about two-thirds as many multiplications as a radix-2 FFT.

Figure 1: See Decimation-in-Time (DIT) Radix-2 FFT\(^8\) and Radix-4 FFT Algorithms\(^9\) for more information on these algorithms.

\(^8\)“Decimation-in-time (DIT) Radix-2 FFT” <http://cnx.org/content/m12016/latest/>

\(^9\)“Radix-4 FFT Algorithms” <http://cnx.org/content/m12027/latest/>
Figure 2: Note that these two butterflies are equivalent.

The split-radix algorithm can also be derived by mixing the radix-2\(^{10}\) and radix-4\(^{11}\) decompositions.

DIT Split-radix derivation

\[
X(k) = \sum_{n=0}^{N-1} x(2n) e^{-\left(\frac{2\pi i (2n) k}{N}\right)} + \sum_{n=0}^{N-1} x(4n+1) e^{-\left(\frac{2\pi i (4n+1) k}{N}\right)} + \sum_{n=0}^{N-1} x(4n+3) e^{-\left(\frac{2\pi i (4n+3) k}{N}\right)}
\]

(1)

\[
\sum_{n=0}^{N-1} x(4n+3) e^{-\left(\frac{2\pi i (4n+3) k}{N}\right)} = DFT_{\frac{N}{2}}[x(2n)] + W_N^k DFT_{\frac{N}{4}}[x(4n+1)] + W_N^{3k} DFT_{\frac{N}{4}}[x(4n+3)]
\]

Figure 3 illustrates the resulting split-radix butterfly.

\(^{10}\)Decimation-in-time (DIT) Radix-2 FFT <http://cnx.org/content/m12016/latest/>

\(^{11}\)Radix-4 FFT Algorithms <http://cnx.org/content/m12027/latest/>
Further decomposition of the half- and quarter-length DFTs yields the full split-radix algorithm. The mix of different-length FFTs in different parts of the flowgraph results in a somewhat irregular algorithm; Sorensen et al.[3] show how to adjust the computation such that the data retains the simpler radix-2 bit-reverse order. A decimation-in-frequency split-radix FFT can be derived analogously.
The split-radix transform has L-shaped butterflies.

The multiplicative complexity of the split-radix algorithm is only about two-thirds that of the radix-2 FFT, and is better than the radix-4 FFT or any higher power-of-two radix as well. The additions within the complex twiddle-factor multiplies are similarly reduced, but since the underlying butterfly tree remains the same in all power-of-two algorithms, the butterfly additions remain the same and the overall reduction in additions is much less.

Operation Counts

<table>
<thead>
<tr>
<th></th>
<th>Complex M/As</th>
<th>Real M/As (4/2)</th>
<th>Real M/As (3/3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiples</td>
<td>$O\left(\frac{N \log_2 N}{3}\right)$</td>
<td>$\frac{4}{9}N \log_2 N - \frac{38}{9}N + 6 + \frac{2}{3}(-1)^M$</td>
<td>$N \log_2 N - 3N + 4$</td>
</tr>
<tr>
<td>Additions</td>
<td>$O(N \log_2 N)$</td>
<td>$\frac{3}{5}N \log_2 N - \frac{16}{9}N + 2 + \frac{2}{5}(-1)^M$</td>
<td>$3N \log_2 N - 3N + 4$</td>
</tr>
</tbody>
</table>
Comments

- The split-radix algorithm has a somewhat irregular structure. Successful programs have been written (Sorensen[3]) for uni-processor machines, but it may be difficult to efficiently code the split-radix algorithm for vector or multi-processor machines.

- G. Bruun's algorithm[1] requires only $N - 2$ more operations than the split-radix algorithm and has a regular structure, so it might be better for multi-processor or special-purpose hardware.

- The execution time of FFT programs generally depends more on compiler- or hardware-friendly software design than on the exact computational complexity. See Efficient FFT Algorithm and Programming Tricks\(^\text{12}\) for further pointers and links to good code.

References

\(^{12}\) "Efficient FFT Algorithm and Programming Tricks" <http://cnx.org/content/m12021/latest/>