Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo
Biology for AP® Courses

28.4 Regulation of Hormone Production

Biology for AP® Courses28.4 Regulation of Hormone Production

In this section, you will explore the following questions:

  • How is hormone production regulated?
  • What are examples of different stimuli that control hormone levels in the body?

Connection for AP® Courses

Hormone production and release are often controlled by negative feedback or positive feedback, although regulation by negative feedback is more common. In negative feedback, a stimulus elicits the release of a hormone that produces a response, and once the response reaches a certain level, it sends a signal that stops additional release of the hormone. In this way, the concentration of hormones in blood is maintained within a narrow range. For example, the anterior pituitary stimulates the thyroid gland to release thyroid hormones T3 and T4. Increased levels of these hormones result in feedback to the hypothalamus and anterior pituitary to inhibit further signaling to the thyroid gland.

Some hormones are regulated by positive feedback in which the response is amplified; an example of hormone regulation by positive feedback is the production of oxytocin during labor and childbirth as uterine contractions cause the production and release of more oxytocin. Disruptions in the mechanisms of feedback often result in deleterious consequences, such as diabetes mellitus resulting in decreased insulin production.

Information presented and the examples highlighted in the section support concepts outlined in Big Idea 2 of the AP® Biology Curriculum Framework. The AP® Learning Objectives listed in the Curriculum Framework provide a transparent foundation for the AP® Biology course, an inquiry-based laboratory experience, instructional activities, and AP® exam questions. A learning objective merges required content with one or more of the seven science practices.

Big Idea 2 Biological systems utilize free energy and molecular building blocks to grow, to reproduce, and to maintain dynamic homeostasis.
Enduring Understanding 2.C Organisms use feedback mechanisms to regulate growth and reproduction, and to maintain dynamic homeostasis.
Essential Knowledge 2.C.1 Organisms use feedback mechanisms to maintain their internal environments and respond to external environmental changes.
Science Practice 6.1 The student can justify claims with evidence.
Learning Objective 2.15 The student can justify a claim made about the effect(s) on a biological system at the molecular, physiological or organism level when given a scenario in which one or more components within a negative regulatory system is altered.

Hormone production and release are primarily controlled by negative feedback. In negative feedback systems, a stimulus elicits the release of a substance; once the substance reaches a certain level, it sends a signal that stops further release of the substance. In this way, the concentration of hormones in blood is maintained within a narrow range. For example, the anterior pituitary signals the thyroid to release thyroid hormones. Increasing levels of these hormones in the blood then give feedback to the hypothalamus and anterior pituitary to inhibit further signaling to the thyroid gland, as illustrated in Figure 28.14. There are three mechanisms by which endocrine glands are stimulated to synthesize and release hormones: humoral stimuli, hormonal stimuli, and neural stimuli.

Visual Connection

The hypothalamus secretes thyrotropin-releasing hormone, which causes the anterior pituitary gland to secrete thyroid-stimulating hormone. Thyroid-stimulating hormone causes the thyroid gland to secrete the thyroid hormones T3 and T4, which increase metabolism, resulting in growth and development. In a negative feedback loop, T3 and T4 inhibit hormone secretion by the hypothalamus and pituitary, terminating the signal.
Figure 28.14 The anterior pituitary stimulates the thyroid gland to release thyroid hormones T3 and T4. Increasing levels of these hormones in the blood results in feedback to the hypothalamus and anterior pituitary to inhibit further signaling to the thyroid gland. (credit: modification of work by Mikael Häggström)
Refer to Figure 28.14
(credit: modification of work by Adhi N. Sharma and D. L. Levy/Semantic Scholar)

Study the given feedback loop.

Which of the given relationships would hold true?

  1. TSH increases production of TRH.
  2. TSH decreases production of T3.
  3. T3 increases production ot T4.
  4. T4 decreases production of TRH.

Humoral Stimuli

The term “humoral” is derived from the term “humor,” which refers to bodily fluids such as blood. A humoral stimulus refers to the control of hormone release in response to changes in extracellular fluids such as blood or the ion concentration in the blood. For example, a rise in blood glucose levels triggers the pancreatic release of insulin. Insulin causes blood glucose levels to drop, which signals the pancreas to stop producing insulin in a negative feedback loop.

Hormonal Stimuli

Hormonal stimuli refers to the release of a hormone in response to another hormone. A number of endocrine glands release hormones when stimulated by hormones released by other endocrine glands. For example, the hypothalamus produces hormones that stimulate the anterior portion of the pituitary gland. The anterior pituitary in turn releases hormones that regulate hormone production by other endocrine glands. The anterior pituitary releases the thyroid-stimulating hormone, which then stimulates the thyroid gland to produce the hormones T3 and T4. As blood concentrations of T3 and T4 rise, they inhibit both the pituitary and the hypothalamus in a negative feedback loop.

Neural Stimuli

In some cases, the nervous system directly stimulates endocrine glands to release hormones, which is referred to as neural stimuli. Recall that in a short-term stress response, the hormones epinephrine and norepinephrine are important for providing the bursts of energy required for the body to respond. Here, neuronal signaling from the sympathetic nervous system directly stimulates the adrenal medulla to release the hormones epinephrine and norepinephrine in response to stress.

Science Practice Connection for AP® Courses

Activity

Create a visual representation to describe the regulation of blood sugar levels, growth spurts in teenagers, and events associated with labor and childbirth. Then explain how disruptions to these regulatory processes (e.g., failure to produce insulin) can affect homeostasis in the body.

Teacher Support

The activity is an application of AP® Learning Objectives 2.15, 2.16, 2.18, and 2.20 and Science Practices 6.1, 7.2, and 5.3 because students are asked to describe the regulation of hormone-controlled physiological processes based on negative and positive feedback mechanisms and how disruptions to these regulatory mechanisms can have adverse effects on the body.

Order a print copy

As an Amazon Associate we earn from qualifying purchases.

Citation/Attribution

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/biology-ap-courses/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/biology-ap-courses/pages/1-introduction
Citation information

© Jan 8, 2024 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.