Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo
Calculus Volume 3

Introduction

Calculus Volume 3Introduction

A photograph of a hurricane, showing the rotation around its eye.
Figure 6.1 Hurricanes form from rotating winds driven by warm temperatures over the ocean. Meteorologists forecast the motion of hurricanes by studying the rotating vector fields of their wind velocity. Shown is Cyclone Catarina in the South Atlantic Ocean in 2004, as seen from the International Space Station. (credit: modification of work by NASA)

Hurricanes are huge storms that can produce tremendous amounts of damage to life and property, especially when they reach land. Predicting where and when they will strike and how strong the winds will be is of great importance for preparing for protection or evacuation. Scientists rely on studies of rotational vector fields for their forecasts (see Example 6.3).

In this chapter, we learn to model new kinds of integrals over fields such as magnetic fields, gravitational fields, or velocity fields. We also learn how to calculate the work done on a charged particle traveling through a magnetic field, the work done on a particle with mass traveling through a gravitational field, and the volume per unit time of water flowing through a net dropped in a river.

All these applications are based on the concept of a vector field, which we explore in this chapter. Vector fields have many applications because they can be used to model real fields such as electromagnetic or gravitational fields. A deep understanding of physics or engineering is impossible without an understanding of vector fields. Furthermore, vector fields have mathematical properties that are worthy of study in their own right. In particular, vector fields can be used to develop several higher-dimensional versions of the Fundamental Theorem of Calculus.

Order a print copy

As an Amazon Associate we earn from qualifying purchases.

Citation/Attribution

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution-NonCommercial-ShareAlike License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/calculus-volume-3/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/calculus-volume-3/pages/1-introduction
Citation information

© Feb 5, 2024 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.