A Brief Introduction to Engineering Computation with MATLAB

By:
Serhat Beyenir
A Brief Introduction to Engineering Computation with MATLAB

By:
Serhat Beyenir

Online:
< http://legacy.cnx.org/content/col11371/1.9/ >

OpenStax-CNX
Table of Contents

Preface .. 1
Study Guide .. 3
1 Introduction
 1.1 What is MATLAB? ... 5
 1.2 Problem Set ... 19
 Solutions .. 21
2 Getting Started
 2.1 Essentials ... 27
 2.2 Problem Set ... 46
 Solutions .. 49
3 Graphics
 3.1 Plotting in MATLAB .. 55
 3.2 Problem Set ... 73
 Solutions .. 78
4 Introductory Programming
 4.1 Writing Scripts to Solve Problems ... 87
 4.2 Problem Set ... 102
 Solutions .. 105
5 Interpolation
 5.1 Interpolation ... 113
 5.2 Problem Set ... 117
 Solutions .. 120
6 Numerical Integration
 6.1 Computing the Area Under a Curve .. 125
 6.2 Problem Set ... 134
 Solutions .. 136
7 Regression Analysis
 7.1 Regression Analysis .. 141
 7.2 Problem Set ... 150
 Solutions .. 152
8 Publishing with MATLAB
 8.1 Generating Reports with MATLAB ... 155
 8.2 Problem Set ... 161
 Solutions .. 162
9 Postscript ... 169
Preface

IN MY TENTH YEAR AT THE INSTITUTE, I DEDICATE THIS BOOK TO THE BCIT COMMUNITY.

The primary purpose of writing a book and distributing it free-of-charge is to extend my gratitude to BCIT\(^2\). I am particularly thrilled to do it with this textbook because it is a product of many learning opportunities BCIT has offered me over a period of several years. What follows is a brief background on how this book came to be.

My post-secondary teaching career began on 22 January 2001 at the Pacific Marine Training Campus of BCIT when I logged on to a Unix workstation to instruct in the Propulsion Plant Simulator. That has been a major milestone in many ways in my professional life. While learning inner workings of Unix operating system (OS), I also made a discovery and that discovery profoundly changed my view on how I thought the world operated. The discovery was the GNU/Linux OS and open source software (OSS) movement through several books, most notably Just for Fun: The Story of an Accidental Revolutionary\(^3\) and The Cathedral and the Bazaar\(^4\). I was convinced that the collective power of connected individuals around the world and the global infrastructure of the Internet had the potential to change the ways the world functioned.

In the last 10 years, BCIT has allowed me to study various subjects through its Professional Development (PD) programs for which I am very grateful. I learned a great deal in PD courses and in one of the recent ones, I had two déjà vu moments similar to my discovery of OSS movement. The first one occurred when I began reading The Wealth of Networks\(^5\) and the second one when I found about Connexions\(^6\). The former was a confirmation of my 10-year old discovery and the latter is what I am using to write this book. Connexions is a web-based curricular content authoring and publishing technology that I believe has a growing potential for writing and distributing free-of-charge learning materials.

Thus, motivation for this book stems from the notions that were generated by the OSS movement.

\(^1\)This content is available online at <http://legacy.cnx.org/content/m41458/1.6/>.
\(^2\)http://www.bcit.ca/
\(^4\)The Cathedral and the Bazaar by E. S. Raymond, Sebastopol: O’Reilly Media. ©1999
\(^5\)The Wealth of Networks by Y. Benkler, New Haven: Yale University Press. ©2006
\(^6\)http://cnx.org/

Available for free at Connexions <http://legacy.cnx.org/content/col11371/1.9>
The book was written to pay a small token of appreciation to BCIT and I hope it will be a contri-
bution to the open educational resources repository.

Serhat Beyenir
North Vancouver, B. C.
25 October 2011
Study Guide

MATLAB, a sub-course of Computer Technology 1 and this text are specifically designed for students with no programming experience. However, students are expected to be proficient in First Year Mathematics and Sciences and access to good reference books are highly recommended. I also assume that students have a working knowledge of the Mac OS X or Microsoft Windows operating systems.

The strategic goal of the course and book is to provide learners with an appreciation for the role computation plays in solving engineering problems. The MATLAB specific skills that I would like students to acquire are as follows:

- Write scripts to solve engineering problems including interpolation, numerical integration and regression analysis,
- Plot graphs to visualize, analyze and present numerical data,
- Publish reports.

The best way to learn about engineering computation is to actually do it. We will therefore solve many engineering problems mainly using a recent version of MATLAB in this book. Since the primary focus is engineering computation, we will concentrate on the mathematical solutions and, to a limited extent, the graphical user interface (GUI) features of MATLAB.

Learning a new skill, especially a computer program, can be an overwhelming experience. To make the best of this process, students are encouraged to observe the following guidelines that have proven to work well:

- Plan to study 2 hours outside of class for every hour inside of class,
- Practice, practice, practice: As the old saying goes, practice makes one perfect or perhaps we should modify that statement: Good practice makes one perfect,
- Buddy system: Study with a classmate. Helping one another drastically improves your understanding of the material. Particularly, students are advised to work the problem sets in this fashion,
- Muddy points: Make a note of muddy points as they may occur during lectures and email your notes to me. I will address those issues at the beginning of the next class,
- Open book exam: Do not try to memorize commands, functions or their syntax but learn where and how to find that information. Through many exercises and problem sets you will

7This content is available online at <http://legacy.cnx.org/content/m41459/1.2/>.
Available for free at Connexions <http://legacy.cnx.org/content/col11371/1.9>
have solved by the end of the course, most computational routines will become second nature to you. The exam is open book, so keep your learning materials and m-files well organized.
Chapter 1

Introduction

1.1 What is MATLAB?¹

MATLAB stands for MATrix LABoratory (see wikipedia²) and is a commercial software application written by The MathWorks, Inc.³ When you first use MATLAB, you can think of it as

¹This content is available online at <http://legacy.cnx.org/content/m41403/1.4/>.
²http://en.wikipedia.org/wiki/MATLAB
³http://www.mathworks.com/

Available for free at Connexions <http://legacy.cnx.org/content/col11371/1.9>
a glorified calculator allowing you to perform engineering calculations and plot data. However, MATLAB is more than an advanced scientific calculator, for example MATLAB’s sophisticated numerical computation environment also allows us to analyze data, simulate engineering systems, document and share our code with others.

1.1.1 Why Use MATLAB?

MATLAB has become a de facto standard in many fields of engineering and science. Even a casual exploration of MATLAB should unveil its computational power however a closer look at MATLAB’s graphics and data analysis tools as well as interaction with other applications and programming languages prove why MATLAB is a very strong application for technical computing.

The standard MATLAB installation includes graphics features to visualize engineering and scientific data in 2-D and 3-D plots. We can interactively build graphs and generate MATLAB command output that can be saved for use in the future. The saved-instructions can be called again with different data set to build new plots. The plots created with MATLAB can be exported in various file formats (e.g. .jpg, .png) to embed in Microsoft Word documents or PowerPoint slideshows.

MATLAB also contains interactive tools to explore and analyze data. For example, we can visualize data with one of the many plotting routines, zoom in to plots to take measurements, perform statistical calculations, fit curves to data and evaluate the obtained expression for a desired value.

MATLAB interacts with other applications (e.g. Microsoft Excel) and can be called from C code, C++ or Fortran programming language.

1.1.2 Running MATLAB

To use MATLAB, it must be installed on your computer and you can start it just like you start any application on your system or you must have access to a network where it is available.

In POWR 3307, we will use MATLAB by accessing the BCIT network. The network access is platform independent, that is, we can run MATLAB under Mac OS X or Microsoft Windows operating systems through a web browser. The following links provide instructions on how to access and use BCIT’s AppsAnywhere service:

Configuring AppsAnywhere on an Apple Macintosh

Configuring AppsAnywhere in Windows

How to open and save files in AppsAnywhere when logging in from a Macintosh

How to open and save files in AppsAnywhere when logging in from Windows

Available for free at Connexions <http://legacy.cnx.org/content/col11371/1.9>
1.1.3 The MATLAB Desktop

When you start the MATLAB program, it displays the MATLAB desktop. The desktop is a set of tools (graphical user interfaces or GUIs) for managing files, variables, and applications associated with MATLAB. The first time you start MATLAB, the desktop appears with the default layout, as shown in the following illustration.

Figure 1.1: The MATLAB Desktop.

1.1.3.1 Command Window

The Command Window is where we execute MATLAB commands. We enter statements at the Command Window prompt. The prompt can be any one of the following:

- **Trial≫** indicates that the Command Window is in normal mode and the MATLAB license will expire after the trial period ends.
- **EDU≫** indicates that the Command Window is in normal mode, in MATLAB Student Version.

Available for free at Connexions <http://legacy.cnx.org/content/col11371/1.9>
CHAPTER 1. INTRODUCTION

- \textgreater{}\textgreater{} indicates that the Command Window is in normal mode.

\textbf{Figure 1.2:} The Command Window.

1.1.3.2 Command History

The Command History is a log of the commands we have executed in the command window.
1.1.3.3 Workspace

The workspace consists of a set of variables stored in memory during a MATLAB session. To open the Workspace browser, select Desktop > Workspace in the MATLAB desktop, or type

```matlab
≫ workspace
```

at the Command Window prompt.
1.1.3.4 Current Folder

The Current Folder is like the Finder in Mac OS X or Windows Explorer in Windows operating systems and allows us to browse through the files and folders. The Current Folder also displays details about files in your current directory and within the hierarchy of the folders it contains.

![Current Folder](http://legacy.cnx.org/content/col11371/1.9)
1.1.3.5 Start Button

The MATLAB Start button is located at the lower left corner of the MATLAB desktop and provides easy access to tools, demos, and documentation for the MATLAB installation.

Figure 1.7: Start Button.

Available for free at Connexions <http://legacy.cnx.org/content/col11371/1.9>
1.1.3.6 Menu Bar

The menu bar contains commands for creating, opening, printing, editing, viewing, and manipulating desktop items.

![Menu Bar](image)

Figure 1.8: Menu Bar.

1.1.3.7 Toolbar

The MATLAB toolbar provides on-screen buttons to access frequently used features such as, copy, paste, undo and redo.

![Toolbar](image)

Figure 1.9: Toolbar.

1.1.3.8 Keyboard shortcuts

MATLAB provides keyboard shortcuts for viewing a history of commands and listing contextual help.

1. The up arrow key,
2. The tab key,
3. The semicolon symbol.

1.1.3.8.1 The Up Arrow Key

Suppose we want to enter the following equation:

\[y = \sin(45) \]

But we mistakenly entered
\[y = \sin(45) \]

MATLAB returns the following prompt:

```
??? Undefined function or method 'sine' for input arguments of type 'double'.
```

Instead of retyping the equation, press the up arrow key, the mistakenly entered line is displayed. Using the left arrow key, move the cursor to the misspelled letter. Make the correction and press Return or Enter to execute the command.

Pressing the up arrow key repeatedly recalls the previously entered commands. Likewise, typing the first characters of previously entered line and pressing the up arrow key displays the full command line. To execute that line, simply press the Return or Enter key.

1.1.3.8.2 The Tab Key

Suppose you forgot how to enter the square root command. Begin typing \(y = sq \) in the command prompt:

\[y = sq \]

Then press the tab key and scroll down to \(\sqrt{\cdot} \). Select it and press Return or Enter key.

\[y = \sqrt{\cdot} \]

1.1.3.8.3 The Semicolon Symbol

The semicolon symbol at the end of a line suppresses the screen output. This is useful when you want to keep your command window clean.

Type the following entry and press the Return key:

\[y = 2 + 2 \]

The following output is displayed:

\[
y = \\
4
\]

Now, press the up arrow key to recall our initial entry

\[y = 2 + 2 \]

And insert a semicolon as follows:

\[y = 2 + 2 ; \]

No numerical result is displayed however MATLAB stores the value of \(y \) in the memory. We can recall the value \(y \) by simply typing \(y \) and pressing Return.

Available for free at Connexions <http://legacy.cnx.org/content/col11371/1.9>
1.1.4 MATLAB Help

MATLAB comes with three forms of online help: help, doc and demos.

1.1.4.1 Help

Typing help in the Command Window lists all primary help topics. You can display a topic by clicking on the link.

≫ help

![Help](image)

Figure 1.10: Help.

Or if you know the command or function you need help with, you can type help followed by the command or function. For example to learn about clc command, type help clc at the command prompt:

≫ help clc
Figure 1.11: The output of \texttt{help clc} command.

Also try the following command: \texttt{help clear}
1.1.4.2 Doc

Obviously, to use help effectively, you need to know what you are looking for. Often times, especially when you first start learning an application, it is usually difficult to ask the right questions. In the case of MATLAB, doc command is generally better than help. If you type doc in the command prompt, MATLAB opens a browser from where you can obtain help easier:

$$\gg\text{doc}$$

Available for free at Connexions <http://legacy.cnx.org/content/col11371/1.9>
Figure 1.13: Built-in MATLAB Documentation.

Like using `help sin`, try typing `doc sin` in the command prompt:

```
≫ doc sin
```

1.1.4.3 Demos

You can learn more about MATLAB through demos by typing `demo` in the command prompt, a list of links to demos will open in Help Browser. Demos and online seminars are available at product demos and online seminars\(^8\).

```
≫ demo
```

\(^8\)http://www.mathworks.com/products/matlab/demos.html

Available for free at Connexions <http://legacy.cnx.org/content/col11371/1.9>
1.1.5 Useful Commands and Functions

For a detailed explanation and examples for each of the following type ‘help function’ (without quotes) at the MATLAB prompt.

Figure 1.14: Built-in MATLAB Demos.
<table>
<thead>
<tr>
<th>Command/Function</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>clc</td>
<td>Clear Command Window</td>
</tr>
<tr>
<td>clear</td>
<td>Remove items from workspace</td>
</tr>
<tr>
<td>who, whos</td>
<td>List variables in workspace</td>
</tr>
<tr>
<td>workspace</td>
<td>Display Workspace browser</td>
</tr>
<tr>
<td>cd</td>
<td>Change working directory</td>
</tr>
<tr>
<td>pwd</td>
<td>Display current directory</td>
</tr>
<tr>
<td>computer</td>
<td>Identify information about computer on which MATLAB is running</td>
</tr>
<tr>
<td>ver</td>
<td>Display version information for MathWorks products</td>
</tr>
<tr>
<td>quit</td>
<td>Terminate MATLAB</td>
</tr>
<tr>
<td>exit</td>
<td>Terminate MATLAB (same as quit)</td>
</tr>
</tbody>
</table>

Table 1.1: Useful commands and functions

1.1.6 Summary of Key Points

1. MATLAB is a popular technical computing application and MathWorks offers a trial version of MATLAB on their website,
2. The MATLAB Desktop consists of Command Window, Command History, Workspace, Current Folder and Start Button,
3. The up/down arrow keys, the tab key and the semicolon are convenient tools to use the Command Window,
4. MATLAB features an online help, doc and demo,
5. Various commands and functions make MATLAB experience easier, for example, clc, clear and exit.

1.2 Problem Set

Exercise 1.2.1

(Solution on p. 21.)

Learn about the following terms using help command:

1. workspace
2. plot
3. clear

9This content is available online at <http://legacy.cnx.org/content/m41463/1.2/>. Available for free at Connexions <http://legacy.cnx.org/content/col11371/1.9>
4. format
5. roots

Exercise 1.2.2
List the items found in START button.

Exercise 1.2.3
List the items found under DESKTOP menu.

Exercise 1.2.4
List the items found under HELP menu.

Exercise 1.2.5
Use Function Browser to learn about natural logarithm. (hint: Help Menu > Function Browser > Mathematics > Elementary Math > Exponential)

(Solution on p. 22.)
(Solution on p. 22.)
(Solution on p. 23.)
(Solution on p. 24.)
Solutions to Exercises in Chapter 1

Solution to Exercise 1.2.1 (p. 19)

1.

≫ help workspace
WORKSPACE Open Workspace browser to manage workspace
 WORKSPACE Opens the Workspace browser with a view of the variables in the current Workspace. Displayed variables may be viewed, manipulated, saved, and cleared.

See also whos, openvar, save.

Reference page in Help browser
doc workspace

≫

2.

≫ help plot
PLOT Linear plot.
 PLOT(X,Y) plots vector Y versus vector X. If X or Y is a matrix, then the vector is plotted versus the rows or columns of the matrix, whichever line up. If X is a scalar and Y is a vector, disconnected line objects are created and plotted as discrete points vertically at X.

3.

≫ help clear
CLEAR Clear variables and functions from memory.
 CLEAR removes all variables from the workspace.
 CLEAR VARIABLES does the same thing.
 CLEAR GLOBAL removes all global variables.
 CLEAR FUNCTIONS removes all compiled M- and MEX-functions.

 CLEAR ALL removes all variables, globals, functions and MEX links.
 CLEAR ALL at the command prompt also removes the Java packages import list.

......

4.

Available for free at Connexions <http://legacy.cnx.org/content/col11371/1.9>
GLOBAL HELP FORMAT

format short

>> format short

5.

GLOBAL HELP ROOTS

roots(c)

roots(c) computes the roots of the polynomial whose coefficients are the elements of the vector C. If C has N+1 components, the polynomial is \(C(1) \cdot x^N + \ldots + C(N) \cdot x + C(N+1) \).

Solution to Exercise 1.2.2 (p. 20)
Following figure illustrates the item found in START button:

![Start Button](image)

Figure 1.15: Start Button

Solution to Exercise 1.2.3 (p. 20)
Following figure illustrates the item found under DESKTOP menu:

Available for free at Connexions <http://legacy.cnx.org/content/col11371/1.9>
Figure 1.16: Desktop menu items

Solution to Exercise 1.2.4 (p. 20)
Following figure illustrates the item found under HELP menu:

Available for free at Connexions <http://legacy.cnx.org/content/col11371/1.9>
Figure 1.17: Help menu items

Solution to Exercise 1.2.5 (p. 20)
Following figure shows the solution:

Available for free at Connexions <http://legacy.cnx.org/content/col11371/1.9>
Figure 1.18: Information about natural logarithm displayed with Search for Functions.
Chapter 2

Getting Started

2.1 Essentials

Learning a new skill, especially a computer program in this case, can be overwhelming. However, if we build on what we already know, the process can be handled rather effectively. In the preceding chapter we learned about MATLAB Graphical User Interface (GUI) and how to get help. Knowing

1This content is available online at <http://legacy.cnx.org/content/m41409/1.2/>.

Available for free at Connexions <http://legacy.cnx.org/content/col11371/1.9>
the GUI, we will use basic math skills in MATLAB to solve linear equations and find roots of polynomials in this chapter.

2.1.1 Basic Computation

2.1.1.1 Mathematical Operators

The evaluation of expressions is accomplished with arithmetic operators as we use them in scientific calculators. Note the additional operators shown in the table below:

<table>
<thead>
<tr>
<th>Operator</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>Plus</td>
<td>Addition</td>
</tr>
<tr>
<td>-</td>
<td>Minus</td>
<td>Subtraction</td>
</tr>
<tr>
<td>*</td>
<td>Asterisk</td>
<td>Multiplication</td>
</tr>
<tr>
<td>/</td>
<td>Forward Slash</td>
<td>Division</td>
</tr>
<tr>
<td>\</td>
<td>Back Slash</td>
<td>Left Matrix Division</td>
</tr>
<tr>
<td>^</td>
<td>Caret</td>
<td>Power</td>
</tr>
<tr>
<td>.*</td>
<td>Dot Asterisk</td>
<td>Array multiplication (element-wise)</td>
</tr>
<tr>
<td>./</td>
<td>Dot Slash</td>
<td>Right array divide (element-wise)</td>
</tr>
<tr>
<td>.\</td>
<td>Dot Back Slash</td>
<td>Left array divide (element-wise)</td>
</tr>
<tr>
<td>.^</td>
<td>Dot Caret</td>
<td>Array power (element-wise)</td>
</tr>
</tbody>
</table>

Table 2.1: Operators

NOTE: The backslash operator is used to solve linear systems of equations, see Section 2.1.5 (Linear Equations).

IMPORTANT: Matrix is a rectangular array of numbers and formed by rows and columns.

For example \[A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \\ 13 & 14 & 15 & 16 \end{pmatrix} \]. In this example \(A \) consists of 4 rows and 4 columns and therefore is a 4x4 matrix. (see Wikipedia\(^2\)).

\(^2\)http://en.wikipedia.org/wiki/Matrix_%28mathematics%29

Available for free at Connexions <http://legacy.cnx.org/content/col11371/1.9>
IMPORTANT: Row vector is a special matrix that contains only one row. In other words, a row vector is a 1xn matrix where n is the number of elements in the row vector. \(B = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \end{pmatrix} \)

IMPORTANT: Column vector is also a special matrix. As the term implies, it contains only one column. A column vector is an nx1 matrix where n is the number of elements in the column vector. \[C = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{pmatrix} \]

NOTE: Array operations refer to element-wise calculations on the arrays, for example if x is an a by b matrix and y is a c by d matrix then x.*y can be performed only if a=c and b=d. Consider the following example, x consists of 2 rows and 3 columns and therefore it is a 2x3 matrix. Likewise, y has 2 rows and 3 columns and an array operation is possible. \[x = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \text{ and } y = \begin{pmatrix} 10 & 20 & 30 \\ 40 & 50 & 60 \end{pmatrix} \text{ then } x.*y = \begin{pmatrix} 10 & 40 & 90 \\ 160 & 250 & 360 \end{pmatrix} \]

Example 2.1
The following figure illustrates a typical calculation in the Command Window.
2.1.1.2 Operator Precedence

MATLAB allows us to build mathematical expressions with any combination of arithmetic operators. The order of operations are set by precedence levels in which MATLAB evaluates an expression from left to right. The precedence rules for MATLAB operators are shown in the list below from the highest precedence level to the lowest.

1. Parentheses ()
2. Power (^)
3. Multiplication (*), right division (/), left division (\)
4. Addition (+), subtraction (-)

2.1.2 Mathematical Functions

MATLAB has all of the usual mathematical functions found on a scientific calculator including square root, logarithm, and sine.

Available for free at Connexions <http://legacy.cnx.org/content/col11371/1.9>
IMPORTANT: Typing \pi returns the number 3.1416. To find the sine of \pi, type in \sin(\pi) and press enter.

IMPORTANT: The arguments in trigonometric functions are in radians. Multiply degrees by \pi/180 to get radians. For example, to calculate \sin(90), type in \sin(90*\pi/180).

WARNING: In MATLAB \log returns the natural logarithm of the value. To find the ln of 10, type in \log(10) and press enter, (ans = 2.3026).

WARNING: MATLAB accepts \log10 for common (base 10) logarithm. To find the log of 10, type in \log10(10) and press enter, (ans = 1).

Practice the following examples to familiarize yourself with the common mathematical functions. Be sure to read the relevant help and doc pages for functions that are not self explanatory.

Example 2.2
Calculate the following quantities:

1. \frac{2^3}{3^2-1},
2. 5^{0.5} - 1
3. \frac{\pi}{4}d^2 for d=2

MATLAB inputs and outputs are as follows:

1. \frac{2^3}{3^2-1} is entered by typing 2^3/(3^2-1) (ans = 1)
2. 5^{0.5} - 1 is entered by typing sqrt(5)-1 (ans = 1.2361)
3. \frac{\pi}{4}d^2 for d=2 is entered by typing pi/4*2^2 (ans = 3.1416)

Example 2.3
Calculate the following exponential and logarithmic quantities:

1. e^2
2. \ln(5^{10})
3. \log_{10}5

MATLAB inputs and outputs are as follows:

1. exp(2) (ans = 7.3891)
2. \log((5^{10})) (ans = 16.0944)
3. \log_{10}(10^{5}) (ans = 5)
Example 2.4
Calculate the following trigonometric quantities:

1. \(\cos \left(\frac{\pi}{6} \right) \)
2. \(\tan(45) \)
3. \(\sin(\pi) + \cos(45) \)

MATLAB inputs and outputs are as follows:

1. \(\cos(\pi/6) \) (ans = 0.8660)
2. \(\tan(45\pi/180) \) (ans = 1.0000)
3. \(\sin(\pi)+\cos(45\pi/180) \) (ans = 0.7071)

2.1.3 The \texttt{format} Function

The \texttt{format} function is used to control how the numeric values are displayed in the Command Window. The \texttt{short} format is set by default and the numerical results are displayed with 4 digits after the decimal point (see the examples above). The \texttt{long} format produces 15 digits after the decimal point.

Example 2.5
Calculate \(\theta = \tan \left(\frac{\pi}{3} \right) \) and display results in \texttt{short} and \texttt{long} formats.

The \texttt{short} format is set by default:

\[
\gg \theta = \tan(\pi/3)
\]

\texttt{theta} =

1.7321

\[
\gg \\text{And the} \texttt{long} \text{ format is turned on by typing} \texttt{format long}: \\
\gg \theta = \tan(\pi/3)
\]

\texttt{theta} =

1.7321

\[
\gg \texttt{format long} \\
\gg \texttt{theta}
\]

Available for free at Connexions <http://legacy.cnx.org/content/col11371/1.9>
\[\theta = 1.732050807568877 \]

2.1.4 Variables

In MATLAB, a named value is called a variable. MATLAB comes with several predefined variables. For example, the name \(\pi \) refers to the mathematical quantity \(\pi \), which is approximately \(\pi \approx 3.1416 \).

WARNING: MATLAB is case-sensitive, which means it distinguishes between upper- and lowercase letters (e.g., data, DATA and DaTa are three different variables). Command and function names are also case-sensitive. Please note that when you use the command-line help, function names are given in upper-case letters (e.g., CLEAR) only to emphasize them. Do not use upper-case letters when running functions and commands.

2.1.4.1 Declaring Variables

Variables in MATLAB are generally represented as matrix quantities. Scalars and vectors are special cases of matrices having size 1x1 (scalar), 1xn (row vector) or nx1 (column vector).

2.1.4.1.1 Declaration of a Scalar

The term scalar as used in linear algebra refers to a real number. Assignment of scalars in MATLAB is easy, type in the variable name followed by = symbol and a number:

Example 2.6

\[a = 1 \]

![Command Window](http://legacy.cnx.org/content/col11371/1.9)

Figure 2.2: Assignment of a scalar quantity.
2.1.4.1.2 Declaration of a Row Vector

Elements of a row vector are separated with blanks or commas.

Example 2.7

Let’s type the following at the command prompt:

\[b = [1 \ 2 \ 3 \ 4 \ 5] \]

![Command Window](image)

Figure 2.3: Assignment of a row vector quantity.

We can also use the Variable Editor to assign a row vector. In the menu bar, select File > New > Variable. This action will create a variable called unnamed which is displayed in the workspace. By clicking on the title unnamed, we can rename it to something more descriptive. By double-clicking on the variable, we can open the Variable Editor and type in the values into spreadsheet looking table.
Figure 2.4: Assignment of a row vector by using the Variable Editor.

2.1.4.1.3 Declaration of a Column Vector

Elements of a column vector is ended by a semicolon:

Example 2.8

c = [1;2;3;4;5;]
Figure 2.5: Assignment of a column vector quantity.

Or by transposing a row vector with the ' operator:

\[c = [1 \ 2 \ 3 \ 4 \ 5]' \]

Figure 2.6: Assignment of a column vector quantity by transposing a row vector with the ' operator.

Or by using the Variable Editor:
2.1.4.1.4 Declaration of a Matrix

Matrices are typed in rows first and separated by semicolons to create columns. Consider the examples below:

Example 2.9
Let us type in a 2x5 matrix:

\[
d = \begin{bmatrix}
2 & 4 & 6 & 8 & 10 \\
1 & 3 & 5 & 7 & 9
\end{bmatrix}
\]
Figure 2.8: Assignment of a 2x5 matrix.

Figure 2.9: Assignment of a matrix by using the Variable Editor.

Example 2.10
This example is a 5x2 matrix:
2.1.5 Linear Equations

Systems of linear equations are very important in engineering studies. In the course of solving a problem, we often reduce the problem to simultaneous equations from which the results are obtained. As you learned earlier, MATLAB stands for Matrix Laboratory and has features to handle matrices. Using the coefficients of simultaneous linear equations, a matrix can be formed to solve a set of simultaneous equations.

Example 2.11

Let’s solve the following simultaneous equations:

\[x + y = 1 \] \hspace{1cm} (2.1)
\[2x - 5y = 9 \] \hspace{1cm} (2.2)

First, we will create a matrix for the left-hand side of the equation using the coefficients, namely 1 and 1 for the first and 2 and -5 for the second. The matrix looks like this:

\[
\begin{pmatrix}
1 & 1 \\
2 & -5
\end{pmatrix}
\] \hspace{1cm} (2.3)

The above matrix can be entered in the command window by typing \(\text{A} = [1 \ 1; \ 2 \ -5] \).

Second, we create a column vector to represent the right-hand side of the equation as follows:

\[
\begin{pmatrix}
1 \\
9
\end{pmatrix}
\] \hspace{1cm} (2.4)
The above column vector can be entered in the command window by typing $B=\begin{bmatrix} 1 \\ 9 \end{bmatrix}$.

To solve the simultaneous equation, we will use left division operator and issue the following command: $C=A\backslash B$. These three steps are illustrated below:

```matlab
≫ A=[1 1; 2 -5]
A =
1   1
2  -5
≫ B= [1;9]
B =
1
9
≫ C=A\B
C =
2
-1
```

The result C indicating 2 and 1 are the values for x and y, respectively.

2.1.6 Polynomials

In the preceding section, we briefly learned about how to use MATLAB to solve linear equations. Equally important in engineering problem solving is the application of polynomials. Polynomials are functions that are built by simply adding together (or subtracting) some power functions. (see Wikipedia\(^3\)).

\[
ax^2 + bx + c = 0 \quad (2.5)
\]

\[
f(x) = ax^2 + bx + c \quad (2.6)
\]

\(^3\)http://en.wikipedia.org/wiki/Polynomial

Available for free at Connexions <http://legacy.cnx.org/content/col11371/1.9>
The coefficients of a polynomial are entered as a row vector beginning with the highest power and including the ones that are equal to 0.

Example 2.12
Create a row vector for the following function: \(y = 2x^4 + 3x^3 + 5x^2 + x + 10 \)

Notice that in this example we have 5 terms in the function and therefore the row vector will contain 5 elements. \(p = [2 3 5 1 10] \)

Example 2.13
Create a row vector for the following function: \(y = 3x^4 + 4x^2 - 5 \)

In this example, coefficients for the terms involving power of 3 and 1 are 0. The row vector still contains 5 elements as in the previous example but this time we will enter two zeros for the coefficients with power of 3 and 1: \(p = [3 0 4 0 -5] \).

2.1.6.1 The `polyval` Function

We can evaluate a polynomial \(p \) for a given value of \(x \) using the syntax `polyval(p, x)` where \(p \) contains the coefficients of polynomial and \(x \) is the given number.

Example 2.14
Evaluate \(f(x) \) at 5.

\[
f(x) = 3x^2 + 2x + 1
\]

(2.7)

The row vector representing \(f(x) \) above is \(p = [3 2 1] \). To evaluate \(f(x) \) at 5, we type in: `polyval(p, 5)`. The following shows the Command Window output:

\[
\gg \ p = [3 2 1]
\]

\[
p = \\
3 \quad 2 \quad 1
\]

\[
\gg \ polyval(p, 5)
\]

\[
\text{ans} = \\
86
\]

\[
\gg
\]
2.1.6.2 The roots Function

Consider the following equation:

\[ax^2 + bx + c = 0 \] \hspace{1cm} (2.8)

Probably you have solved this type of equations numerous times. In MATLAB, we can use the \texttt{roots} function to find the roots very easily.

Example 2.15

Find the roots for the following:

\[0.6x^2 + 0.3x - 0.9 = 0 \] \hspace{1cm} (2.9)

To find the roots, first we enter the coefficients of polynomial in to a row vector \texttt{p} with \texttt{p=[0.6 0.3 -0.9]} and issue the \texttt{r=roots(p)} command. The following shows the command window output:

\[
\gg \texttt{p=[0.6 0.3 -0.9]}
\]

\[
\texttt{p} =
\begin{array}{ccc}
0.6000 & 0.3000 & -0.9000 \\
\end{array}
\]

\[
\gg \texttt{r=roots(p)}
\]

\[
\texttt{r} =
\begin{array}{ccc}
-1.5000 & 1.0000 \\
\end{array}
\]

2.1.7 Splitting a Statement

You will soon find out that typing long statements in the Command Window or in the the Text Editor makes it very hard to read and maintain your code. To split a long statement over multiple lines simply enter three periods "..." at the end of the line and carry on with your statement on the next line.

Example 2.16

The following command window output illustrates the use of three periods:

Available for free at Connexions <http://legacy.cnx.org/content/col11371/1.9>
\[
\sin(\pi) + \cos(45\pi/180) - \sin(\pi/2) + \cos(45\pi/180) + \tan(\pi/3)
\]

ans =

2.1463

\[
\sin(\pi) + \cos(45\pi/180) - \sin(\pi/2) + \cos(45\pi/180) + \tan(\pi/3)
\]

ans =

2.1463

\[
\gg
\]

2.1.8 Comments

Comments are used to make scripts more "readable". The percent symbol `%` separates the comments from the code. Examine the following examples:

Example 2.17

The long statements are split to make it easier to read. However, despite the use of descriptive variable names, it is hard to understand what this script does, see the following Command Window output:

```matlab
\texttt{t\_water=}80;  
\texttt{t\_outside=}15;  
\texttt{inner\_dia=}0.05;  
\texttt{thickness=}0.006;  
\texttt{Lambda\_steel=}48;  
\texttt{AlfaInside=}2800;  
\texttt{AlfaOutside=}17;  
\texttt{thickness\_insulation=}0.012;  
\texttt{Lambda\_insulation=}0.03;  

\texttt{r\_i=}inner\_dia/2  
\texttt{r\_o=}r\_i+thickness  
\texttt{r\_i\_insulation=}r\_o  
\texttt{r\_o\_insulation=}r\_i\_insulation+thickness\_insulation  
\texttt{Area\_inside=}2*pi*r\_i  
\texttt{Area\_outside=}2*pi*r\_o  
\texttt{Area\_outside\_insulated=}2*pi*r\_o\_insulation
```

Available for free at Connexions <http://legacy.cnx.org/content/col11371/1.9>
AreaMPipe = (2*pi*(r_o-r_i)/log(r_o/r_i)
AreaMinsulation = (2*pi*(r_o-insulation-r_i-insulation))/log(r_o/r_i-insulation)
TotalResistance = (1/(AlfaInside*AreaInside)) + ...
 (thickness/(Lambda_steel*AreaM_pipe)) + (1/(AlfaOutside*AreaOutside))
TotalResistance_insulated = (1/(AlfaInside*AreaInside)) + ...
 (thickness/(Lambda_steel*AreaM_pipe)) + (thickness_insulation
 /(Lambda_insulation*AreaM_insulation)) + (1/(AlfaOutside*AreaOutside_insulated))
Qdot = (t_water-t_outside)/(TotalResistance*1000)
Qdot_insulated = (t_water-t_outside)/(TotalResistance_insulated*1000)
PercentageReduction = ((Qdot-Qdot_insulated)/Qdot)*100

Example 2.18

The following is an edited version of the above including numerous comments:

% Problem 16.06
% Problem Statement
% Calculate the percentage reduction in heat loss when a layer of hair felt
% is wrapped around the outside surface (see problem 16.05)

format short

% Input Values
t_water = 80; % Water temperature [C]
t_outside = 15; % Atmospheric temperature [C]
inner_dia = 0.05; % Inner diameter [m]
thickness = 0.006; % [m]
Lambda_steel = 48; % Thermal conductivity of steel [W/mK]
AlfaInside = 2800; % Heat transfer coefficient of inside [W/m2K]
AlfaOutside = 17; % Heat transfer coefficient of outside [W/m2K]
% Neglect radiation
% Additional layer
thickness_insulation = 0.012; % [m]
Lambda_insulation = 0.03; % Thermal conductivity of insulation [W/mK]

% Output Values
% Qdot = (t_water-t_outside)/TotalResistance
% TotalResistance = (1/(AlfaInside*AreaInside)) + (thickness/(Lambda_steel*AreaM)) + ...
% (1/(AlfaOutside*AreaOutside))
% Calculating the unknown terms
r_i = inner_dia/2 % Inner radius of pipe [m]
r_o = r_i + thickness % Outer radius of pipe [m]
\(r_{i_{\text{insulation}}} = r_o \) % Inner radius of insulation [m]
\(r_{o_{\text{insulation}}} = r_{i_{\text{insulation}}} + \text{thickness}_{\text{insulation}} \) % Outer radius of pipe [m]
AreaInside = \(2\pi r_i\)
AreaOutside = \(2\pi r_o\)
AreaOutside_insulated = \(2\pi r_{o_{\text{insulation}}}\)
AreaM_pipe = \((2\pi (r_o - r_i))/\log(r_o/r_i)\) % Logarithmic mean area for pipe
AreaM_insulation = \((2\pi (r_{o_{\text{insulation}}} - r_{i_{\text{insulation}}})) / \log(r_{o_{\text{insulation}}}/r_{i_{\text{insulation}}})\) % Logarithmic mean area for insulation
TotalResistance = \((1/(\text{AlfaInside} \times \text{AreaInside})) + (\text{thickness}/(\text{Lambda}_{\text{steel}} \times \text{AreaM}_{\text{pipe}})) + (1/(\text{AlfaOutside} \times \text{AreaOutside}))\)
TotalResistance_insulated = \((1/(\text{AlfaInside} \times \text{AreaInside})) + (\text{thickness}/(\text{Lambda}_{\text{steel}} \times \text{AreaM}_{\text{pipe}})) + (\text{thickness}_{\text{insulation}}/(\text{Lambda}_{\text{insulation}} \times \text{AreaM}_{\text{insulation}})) + (1/(\text{AlfaOutside} \times \text{AreaOutside}_{\text{insulated}}))\)
\(Q_{\text{dot}} = (t_{\text{water}} - t_{\text{outside}})/(\text{TotalResistance} \times 1000) \) % converting into kW
\(Q_{\text{dot}}_{\text{insulated}} = (t_{\text{water}} - t_{\text{outside}})/(\text{TotalResistance}_{\text{insulated}} \times 1000) \) % converting into kW
PercentageReduction = \(((Q_{\text{dot}} - Q_{\text{dot}}_{\text{insulated}})/Q_{\text{dot}}) \times 100\)

2.1.9 Basic Operations

<table>
<thead>
<tr>
<th>Command</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>sum</td>
<td>Sum of array elements</td>
</tr>
<tr>
<td>prod</td>
<td>Product of array elements</td>
</tr>
<tr>
<td>sqrt</td>
<td>Square root</td>
</tr>
<tr>
<td>log10</td>
<td>Common logarithm (base 10)</td>
</tr>
<tr>
<td>log</td>
<td>Natural logarithm</td>
</tr>
<tr>
<td>max</td>
<td>Maximum elements of array</td>
</tr>
<tr>
<td>min</td>
<td>Minimum elements of array</td>
</tr>
<tr>
<td>mean</td>
<td>Average or mean value of arrays</td>
</tr>
<tr>
<td>std</td>
<td>Standard deviation</td>
</tr>
</tbody>
</table>

Table 2.2: Basic operations.
2.1.10 Special Characters

<table>
<thead>
<tr>
<th>Character</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>=</td>
<td>Assignment</td>
</tr>
<tr>
<td>()</td>
<td>Prioritize operations</td>
</tr>
<tr>
<td>[]</td>
<td>Construct array</td>
</tr>
<tr>
<td>:</td>
<td>Specify range of array elements</td>
</tr>
<tr>
<td>.</td>
<td>Row element separator in an array</td>
</tr>
<tr>
<td>;</td>
<td>Column element separator in an array</td>
</tr>
<tr>
<td>...</td>
<td>Continue statement to next line</td>
</tr>
<tr>
<td>.</td>
<td>Decimal point, or structure field separator</td>
</tr>
<tr>
<td>%</td>
<td>Insert comment line into code</td>
</tr>
</tbody>
</table>

Table 2.3: Special Characters

2.1.11 Summary of Key Points

1. MATLAB has the common functions found on a scientific calculator and can be operated in a similar way,
2. MATLAB can store values in variables. Variables are case sensitive and some variables are reserved by MATLAB (e.g. \(\pi \) stores 3.1416),
3. Variable Editor can be used to enter or manipulate matrices,
4. The coefficients of simultaneous linear equations and polynomials are used to form a row vector. MATLAB then can be used to solve the equations,
5. The `format` function is used to control the number of digits displayed,
6. Three periods "..." at the end of the line is used to split a long statement over multiple lines,
7. The percent symbol % separates the comments from the code, anything following % symbol is ignored by MATLAB.

2.2 Problem Set\(^4\)

Determine the value of each of the following.

Exercise 2.2.1
\[6 \times 7 + 4^2 - 2^4 \]
(Solution on p. 49.)

\(^4\)This content is available online at <http://legacy.cnx.org/content/m41464/1.6/>.

Available for free at Connexions <http://legacy.cnx.org/content/col11371/1.9>
Exercise 2.2.2
\[
\frac{3^2 + 2^3}{4^3 - 5^2} + \frac{6^{0.5} - 5^2}{4^3 + 5^6 + 7^8}
\]
(Solution on p. 49.)

Exercise 2.2.3
\[
\log 10^2 + 10^5
\]
(Solution on p. 49.)

Exercise 2.2.4
\[
e^2 + 2^3 - \ln (e^2)
\]
(Solution on p. 49.)

Exercise 2.2.5
\[
\sin(2\pi) + \cos \left(\frac{\pi}{3} \right)
\]
(Solution on p. 49.)

Exercise 2.2.6
\[
\tan \left(\frac{\pi}{3} \right) + \cos (270) + \sin (270) + \cos \left(\frac{\pi}{3} \right)
\]
(Solution on p. 49.)

Exercise 2.2.7
Solve the following system of equations:
\[
\begin{align*}
2x + 4y &= 1 \\
x + 5y &= 2
\end{align*}
\]
(Solution on p. 49.)

Exercise 2.2.8
Evaluate \(y \) at 5.
\[
y = 4x^4 + 3x^2 - x
\]
(Solution on p. 49.)

Exercise 2.2.9
Given below is Load-Gage Length data for a type 304 stainless steel that underwent a tensile test. Original specimen diameter is 12.7 mm. \(^5\)

Table 2.4

The engineering stress is defined as $\sigma = \frac{P}{A}$, where P is the load [N] on the sample with an original cross-sectional area $A \ [m^2]$ and the engineering strain is defined as $\epsilon = \frac{\Delta l}{l}$, where Δl is the change in length and l is the initial length.

Compute the stress and strain values for each of the measurements obtained in the tensile test. Data available for download.\(^6\)

\(^6\)See the file at <http://legacy.cnx.org/content/m41464/latest/Chp2_Exericse9.zip>

Available for free at Connexions <http://legacy.cnx.org/content/col11371/1.9>
Solutions to Exercises in Chapter 2

Solution to Exercise 2.2.1 (p. 46)
\[
(6*7)+4^2-2^4 \text{ (ans = 42)}
\]

Solution to Exercise 2.2.2 (p. 46)
\[
((3^2+2^3)/(4^5-5^4)) + ((\sqrt{64}-5^2)/(4^5+5^6+7^8)) \text{ (ans = 0.0426)}
\]

Solution to Exercise 2.2.3 (p. 47)
\[
\log_{10}(10^2)+10^5 \text{ (ans = 100002)}
\]

Solution to Exercise 2.2.4 (p. 47)
\[
\exp(2)+2^3-\log(\exp(2)) \text{ (ans = 13.3891)}
\]

Solution to Exercise 2.2.5 (p. 47)
\[
\sin(2\pi)+\cos(\pi/4) \text{ (ans = 0.7071)}
\]

Solution to Exercise 2.2.6 (p. 47)
\[
\tan(\pi/3)+\cos(270*\pi/180)+\sin(270*\pi/180)+\cos(\pi/3) \text{ (ans = 1.2321)}
\]

Solution to Exercise 2.2.7 (p. 47)
\[
\mathbf{A} = \begin{bmatrix} 2 & 4 \\ 1 & 5 \end{bmatrix}
\]

\[
\mathbf{B} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}
\]

\[
\mathbf{Solution} = \mathbf{A}\backslash\mathbf{B}
\]

Solution =
\[
\begin{bmatrix} -0.5000 \\ 0.5000 \end{bmatrix}
\]

Solution to Exercise 2.2.8 (p. 47)
\[
p = [4 \ 0 \ 3 \ -1 \ 0]
\]

Available for free at Connexions <http://legacy.cnx.org/content/col11371/1.9>
\[p = \begin{pmatrix} 4 & 0 & 3 & -1 & 0 \end{pmatrix} \]

\[\gg \text{polyval}(p,5) \]

\[\text{ans} = 2570 \]

Solution to Exercise 2.2.9 (p. 47)

First, we need to enter the data sets. Because it is rather a large table, using Variable Editor is more convenient. See the figures below:

Figure 2.11: Load in Newtons
Figure 2.12: Extension length in mm.

Next, we will calculate the cross-sectional area.

\[
\text{Area} = \frac{\pi}{4} (0.0127^2)
\]

Area = 1.2668e-004

Now, we can find the Stress values with the following, note that we are obtaining results in MPa:

\[
\text{Sigma} = \frac{\text{Load}_N}{\text{Area}} \times 10^{-6}
\]

Sigma =

0
38.6022
77.1964
115.8065
154.4086
193.0108
218.0351
232.0076
257.9792
For strain calculation, we will first find the change in length:

\[\Delta L = \text{Length}_{\text{mm}} - 50.800 \]

\[
\begin{align*}
\Delta L &= \begin{array}{c}
0 \\
0.0102 \\
0.0203 \\
0.0305 \\
0.0406 \\
0.0508 \\
0.0610 \\
0.0711 \\
0.1016 \\
0.1270 \\
0.1524 \\
0.1778 \\
0.2032 \\
1.0160 \\
2.5400 \\
5.0800 \\
7.6200 \\
10.1600 \\
10.6680 \\
12.7000 \\
15.2400
\end{array}
\end{align*}
\]

Now we can determine Strain with the following:

Available for free at Connexions <http://legacy.cnx.org/content/col11371/1.9>
Epsilon=Delta_L./50.800

Epsilon =

 0
 0.0002
 0.0004
 0.0006
 0.0008
 0.0010
 0.0012
 0.0014
 0.0020
 0.0025
 0.0030
 0.0035
 0.0040
 0.0200
 0.0500
 0.1000
 0.1500
 0.2000
 0.2100
 0.2500
 0.3000

The final results can be tabulated as follows:

[Sigma Epsilon]

ans =

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0002</td>
<td>38.6022</td>
</tr>
<tr>
<td>0.0004</td>
<td>77.1964</td>
</tr>
<tr>
<td>0.0006</td>
<td>115.8065</td>
</tr>
<tr>
<td>0.0008</td>
<td>154.4086</td>
</tr>
<tr>
<td>0.0010</td>
<td>193.0108</td>
</tr>
<tr>
<td>0.0012</td>
<td>218.0351</td>
</tr>
<tr>
<td>0.0014</td>
<td>232.0076</td>
</tr>
<tr>
<td>0.0020</td>
<td>257.9792</td>
</tr>
</tbody>
</table>

Available for free at Connexions <http://legacy.cnx.org/content/col11371/1.9>
<table>
<thead>
<tr>
<th>Value</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>268.0047</td>
<td>0.0025</td>
</tr>
<tr>
<td>272.9780</td>
<td>0.0030</td>
</tr>
<tr>
<td>278.0302</td>
<td>0.0035</td>
</tr>
<tr>
<td>281.9773</td>
<td>0.0040</td>
</tr>
<tr>
<td>320.0269</td>
<td>0.0200</td>
</tr>
<tr>
<td>381.9955</td>
<td>0.0500</td>
</tr>
<tr>
<td>465.9888</td>
<td>0.1000</td>
</tr>
<tr>
<td>519.9844</td>
<td>0.1500</td>
</tr>
<tr>
<td>548.0085</td>
<td>0.2000</td>
</tr>
<tr>
<td>549.9820</td>
<td>0.2100</td>
</tr>
<tr>
<td>537.9830</td>
<td>0.2500</td>
</tr>
<tr>
<td>480.0403</td>
<td>0.3000</td>
</tr>
</tbody>
</table>
Chapter 3

Graphics

3.1 Plotting in MATLAB1

A picture is worth a thousand words, particularly visual representation of data in engineering is very useful. MATLAB has powerful graphics tools and there is a very helpful section devoted to graphics in MATLAB Help: Graphics. Students are encouraged to study that section; what follows

1This content is available online at <http://legacy.cnx.org/content/m41442/1.2/>.

Available for free at Connexions <http://legacy.cnx.org/content/col11371/1.9>
is a brief summary of the main plotting features.

3.1.1 Two-Dimensional Plots

3.1.1.1 The `plot` Statement

Probably the most common method for creating a plot is by issuing `plot(x, y)` statement where function y is plotted against x.

Example 3.1

Type in the following statement at the MATLAB prompt:

```matlab
x=[-pi:.1:pi]; y=sin(x); plot(x,y);
```

After we executed the statement above, a plot named Figure1 is generated:

![Graph of sin(x)](http://legacy.cnx.org/content/col11371/1.9)

Figure 3.1: Graph of sin(x)
Having variables assigned in the Workspace, x and y=sin(x) in our case, we can also select x and y, and right click on the selected variables. This opens a menu from which we choose plot(x,y). See the figure below.

Figure 3.2: Creating a plot from Workspace.

3.1.1.2 Annotating Plots

Graphs without labels are incomplete and labeling elements such as plot title, labels for x and y axes, and legend should be included. Using up arrow, recall the statement above and add the annotation commands as shown below.

```matlab
x=[-pi:.1:pi];y=sin(x);plot(x,y);title('Graph of y=sin(x)');xlabel('x');ylabel('sin(x)');grid on
```

Run the file and compare your result with the first one.

Available for free at Connexions <http://legacy.cnx.org/content/col11371/1.9>
CHAPTER 3. GRAPHICS

Figure 3.3: Graph of $y = \sin(x)$ with Labels.

ASIDE
Type in the following at the MATLAB prompt and learn additional commands to annotate plots:

```
help gtext
help legend
help zlabel
```

3.1.1.3 Superimposed Plots

If you want to merge data from two graphs, rather than create a new graph from scratch, you can superimpose the two using a simple trick:

Available for free at Connexions <http://legacy.cnx.org/content/col11371/1.9>
% This script generates sin(x) and cos(x) plot on the same graph
% initialize variables
x=[-pi:.1:pi]; % create a row vector from -pi to +pi with .1 increments
y0=sin(x); % calculate sine value for each x
y1=cos(x); % calculate cosine value for each x
% Plot sin(x) and cos(x) on the same graph
plot(x,y0,x,y1);
figure(); % Use this instead of plot(x,y0,x,y1); to create a new figure
figure(); % Use this instead of plot(x,y0,x,y1); to create a new figure

Figure 3.4: Graph of sin(x) and cos(x) in the same plot with labels and legend.

Available for free at Connexions <http://legacy.cnx.org/content/col11371/1.9>
3.1.1.4 Multiple Plots in a Figure

Multiple plots in a single figure can be generated with subplot in the Command Window. However, this time we will use the built-in Plot Tools. Before we initialize that tool set, let us create the necessary variables using the following script:

```
% This script generates sin(x) and cos(x) variables
clc               %Clears command window
clear all         %Clears the variable space
close all         %Closes all figures
X1=[-2*pi:.1:2*pi]; %Creates a row vector from -2*pi to 2*pi with .1 increments
Y1=sin(X1);       %Calculates sine value for each x
Y2=cos(X1);       %Calculates cosine value for each x
Y3=Y1+Y2;         %Calculates sin(x)+cos(x)
Y4=Y1-Y2;         %Calculates sin(x)-cos(x)
```

Note that the above script clears the command window and variable workspace. It also closes any open Figures. After running the script, we will have X1, Y1, Y2, Y3 and Y4 loaded in the workspace. Next, select File > New > Figure, a new Figure window will open. Click "Show Plot Tools and Dock Figure" on the tool bar.
Figure 3.5: Plot Tools

Under New Subplots > 2D Axes, select four vertical boxes that will create four subplots in one figure. Also notice, the five variables we created earlier are listed under Variables.
Figure 3.6: Creating four sub plots.

After the subplots have been created, select the first subplot and click on "Add Data". In the dialog box, set X Data Source to X1 and Y Data Source to Y1. Repeat this step for the remaining subplots paying attention to Y Data Source (Y2, Y3 and Y4 need to be selected in the subsequent steps while X1 is always the X Data Source).
Next, select the first item in "Plot Browser" and activate the "Property Editor". Fill out the fields as shown in the figure below. Repeat this step for all subplots.
Figure 3.8: Using "Property Editor".

Save the figure as $\sin x \cos x$.fig in the current directory.
Figure 3.9: The four subplots generated with "Plot Tools".

Available for free at Connexions <http://legacy.cnx.org/content/col11371/1.9>
3.1.2 Three-Dimensional Plots

3D plots can be generated from the Command Window as well as by GUI alternatives. This time, we will go back to the Command Window.

Available for free at Connexions <http://legacy.cnx.org/content/col11371/1.9>
3.1.2.1 The `plot3` Statement

With the X1,Y1,Y2 and Y2 variables still in the workspace, type in `plot3(X1,Y1,Y2)` at the MATLAB prompt. A figure will be generated, click "Show Plot Tools and Dock Figure".

![Figure 3.11: A raw 3D figure is generated with `plot3`.](image)

Use the property editor to make the following changes.
Figure 3.12: 3D Property Editor.

The final result should look like this:
Figure 3.13: 3D graph of x, $\sin(x)$, $\cos(x)$

Use `help` or `doc` commands to learn more about 3D plots, for example, `image(x)`, `surf(x)` and `mesh(x)`.

3.1.3 Generate Code

A code can be generated to reproduce the plots. To initialize this process, recall `sinxcosx.fig` and select File \rightarrow Generate Code.

Available for free at Connexions <http://legacy.cnx.org/content/col11371/1.9>
Figure 3.14: Generating code to reproduce a plot.
Figure 3.15: M-Code generation in progress.

```matlab
function createfigure2(X1, Y1, Y2, Y3, Y4)
%CREATEFIGURE2(X1,Y1,Y2,Y3,Y4)
% X1: vector of x data
% Y1: vector of y data
% Y2: vector of y data
% Y3: vector of y data
% Y4: vector of y data

% Auto-generated by MATLAB on 05-Oct-2011 12:43:49

% Create figure
figure1 = figure;

% Create axes
axes1 = axes('Parent',figure1,'YGrid','on','XGrid','on',
             'Position',[0.13 0.791155913978495 0.775 0.11741935483871]);
box(axes1,'on');
hold(axes1,'all');

% Create title
title('Graph of sin(x)');

% Create xlabel
xlabel('x');
```

Available for free at Connexions <http://legacy.cnx.org/content/col11371/1.9>
% Create ylabel
ylabel('Sin(x)');

% Create plot
plot(X1,Y1,'Parent',axes1,'DisplayName','Y1 vs X1');

% Create axes
axes2 = axes('Parent',figure1,'YGrid','on','XGrid','on',
 'Position',[0.13 0.572069892473118 0.775 0.11741935483871]);
box(axes2,'on');
hold(axes2,'all');

% Create title
title('Graph of cos(x)');

% Create xlabel
xlabel('x');

% Create ylabel
ylabel('Cos(x)');

% Create plot
plot(X1,Y2,'Parent',axes2,'DisplayName','Y2 vs X1');

% Create axes
axes3 = axes('Parent',figure1,'YGrid','on','XGrid','on',
 'Position',[0.13 0.352983870967742 0.775 0.11741935483871]);
box(axes3,'on');
hold(axes3,'all');

% Create title
title('Graph of sin(x)+cos(x)');

% Create xlabel
xlabel('x');

% Create ylabel
ylabel('Cos(x)+Sin(x)');

% Create plot
plot(X1,Y3,'Parent',axes3,'DisplayName','Y3 vs X1');

Available for free at Connexions <http://legacy.cnx.org/content/col11371/1.9>
% Create axes
axes4 = axes('Parent',figure1,'YGrid','on','XGrid','on',
 'Position',[0.13 0.133897849462366 0.775 0.11741935483871]);
box(axes4,'on');
hold(axes4,'all');

% Create title
title('Graph of sin(x)-cos(x)');

% Create xlabel
xlabel('x');

% Create ylabel
ylabel('Sin(x)-Cos(x)');

% Create plot
plot(X1,Y4,'Parent',axes4,'DisplayName','Y4 vs X1');

As you can see, the file assumes you are using the same variables originally used to create the graph, therefore the variables need to be passed as arguments in the future executions of the generated code.

3.1.4 Summary of Key Points

1. `plot(x, y)` and `plot3(X1,Y1,Y2)` statements create 2- and 3-D graphs respectively,
2. Plots at minimum should contain the following elements: `title`, `xlabel`, `ylabel` and `legend`,
3. Annotated plots can be easily generated with GUI Plot Tools,
4. MATLAB can generate code to reproduce plots.

3.2 Problem Set

Exercise 3.2.1

Plot \(y = a + bx \), using the specified coefficients and ranges (use increments of 0.1):

- a. \(a = 2, b = 0.3 \) for \(0 \leq x \leq 5 \)
- b. \(a = 3, b = 0 \) for \(0 \leq x \leq 10 \)
- c. \(a = 4, b = -0.3 \) for \(0 \leq x \leq 15 \)

Exercise 3.2.2

Plot the following functions, using increments of 0.01 and \(a = 6, b = 0.8, 0 \leq x \leq 5 \):

2This content is available online at <http://legacy.cnx.org/content/m41466/1.7/>.

Available for free at Connexions <http://legacy.cnx.org/content/col11371/1.9>
a. \(y = a + x^b \)
b. \(y = ax^b \)
c. \(y = a \sin(x) \)

Exercise 3.2.3
(Solution on p. 80.)
Plot function \(y = \frac{\sin(x)}{x} \) for \(\frac{\pi}{100} \leq x \leq 10\pi \) using increments of \(\frac{\pi}{100} \)

Exercise 3.2.4
(Solution on p. 81.)
Data collected from Boyle’s Law experiment are as follows: (Data available for download.\(^3\))

<table>
<thead>
<tr>
<th>Volume [cm(^3)]</th>
<th>Pressure [Pa]</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.34</td>
<td>100330</td>
</tr>
<tr>
<td>7.24</td>
<td>102200</td>
</tr>
<tr>
<td>7.14</td>
<td>103930</td>
</tr>
<tr>
<td>7.04</td>
<td>105270</td>
</tr>
<tr>
<td>6.89</td>
<td>107400</td>
</tr>
<tr>
<td>6.84</td>
<td>108470</td>
</tr>
<tr>
<td>6.79</td>
<td>109400</td>
</tr>
<tr>
<td>6.69</td>
<td>111140</td>
</tr>
<tr>
<td>6.64</td>
<td>112200</td>
</tr>
</tbody>
</table>

Table 3.1

Plot a graph of Pressure vs Volume, annotate your graph.

Exercise 3.2.5
(Solution on p. 82.)
The original data collected from Boyle’s \(^4\) experiment are as follows: (Data available for download.\(^5\))

\(^3\)See the file at <http://legacy.cnx.org/content/m41466/latest/Chp3_Exercise4.zip>

\(^4\)Introduction to Engineering: Modeling and Problem Solving by J. B. Brockman, John Wiley and Sons, Inc. ©2009, (p.246)

\(^5\)See the file at <http://legacy.cnx.org/content/m41466/latest/Chp3_Exercise5.zip>

Available for free at Connexions <http://legacy.cnx.org/content/col11371/1.9>
<table>
<thead>
<tr>
<th>Volume [tube-inches]</th>
<th>Pressure [inches-Hg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>29.125</td>
</tr>
<tr>
<td>10</td>
<td>35.000</td>
</tr>
<tr>
<td>8</td>
<td>43.688</td>
</tr>
<tr>
<td>6</td>
<td>58.250</td>
</tr>
<tr>
<td>5</td>
<td>70.000</td>
</tr>
<tr>
<td>4</td>
<td>87.375</td>
</tr>
<tr>
<td>3</td>
<td>116.500</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Extension [mm]</th>
<th>Load [kN]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.0</td>
</tr>
<tr>
<td>0.09</td>
<td>1.9</td>
</tr>
<tr>
<td>0.31</td>
<td>6.1</td>
</tr>
<tr>
<td>0.47</td>
<td>9.4</td>
</tr>
<tr>
<td>2.13</td>
<td>11.0</td>
</tr>
<tr>
<td>5.05</td>
<td>11.7</td>
</tr>
<tr>
<td>10.50</td>
<td>12.0</td>
</tr>
<tr>
<td>16.50</td>
<td>11.9</td>
</tr>
<tr>
<td>23.70</td>
<td>10.7</td>
</tr>
<tr>
<td>27.70</td>
<td>9.3</td>
</tr>
<tr>
<td>34.50</td>
<td>8.1</td>
</tr>
</tbody>
</table>

Table 3.2

Plot a graph of Pressure vs Volume, annotate your graph.

Exercise 3.2.6
Display the two plots created earlier in one plot.

Exercise 3.2.7
A tensile test of SAE 1020 steel produced the data below (Data available for download.\(^6\))

\(^7\) experiment are as follows:

\(^6\)See the file at <http://legacy.cnx.org/content/m41466/latest/Chp3_Exercise7.zip>

Available for free at Connexions <http://legacy.cnx.org/content/col11371/1.9>
Table 3.3

Plot a graph of Load vs Extension, annotate your graph.

Exercise 3.2.8

Given below is Stress-Strain data for a type 304 stainless steel. Experiment are as follows: (Data available for download.)

<table>
<thead>
<tr>
<th>Stress [MPa]</th>
<th>Strain [mm/mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.0000</td>
</tr>
<tr>
<td>38.6</td>
<td>0.0002</td>
</tr>
<tr>
<td>77.2</td>
<td>0.0004</td>
</tr>
<tr>
<td>115.8</td>
<td>0.0006</td>
</tr>
<tr>
<td>154.4</td>
<td>0.0008</td>
</tr>
<tr>
<td>193.0</td>
<td>0.0010</td>
</tr>
<tr>
<td>218.0</td>
<td>0.0012</td>
</tr>
<tr>
<td>232.0</td>
<td>0.0014</td>
</tr>
<tr>
<td>258.0</td>
<td>0.0020</td>
</tr>
<tr>
<td>268.0</td>
<td>0.0025</td>
</tr>
<tr>
<td>273.0</td>
<td>0.0030</td>
</tr>
<tr>
<td>278.0</td>
<td>0.0035</td>
</tr>
<tr>
<td>282.0</td>
<td>0.0040</td>
</tr>
<tr>
<td>320.0</td>
<td>0.0200</td>
</tr>
<tr>
<td>382.0</td>
<td>0.0500</td>
</tr>
<tr>
<td>466.0</td>
<td>0.1000</td>
</tr>
<tr>
<td>520.0</td>
<td>0.1500</td>
</tr>
<tr>
<td>548.0</td>
<td>0.2000</td>
</tr>
<tr>
<td>550.0</td>
<td>0.2100</td>
</tr>
<tr>
<td>538.0</td>
<td>0.2500</td>
</tr>
<tr>
<td>480.0</td>
<td>0.3000</td>
</tr>
</tbody>
</table>

Table 3.4

9 See the file at <http://legacy.cnx.org/content/m41466/latest/Chp3_Exercise8.zip>

Available for free at Connexions <http://legacy.cnx.org/content/col11371/1.9>
Plot a graph of Stress vs Strain, annotate your graph.
CHAPTER 3. GRAPHICS

Solutions to Exercises in Chapter 3

Solution to Exercise 3.2.1 (p. 73)

a.

```matlab
a=2; b=.3; x=[0:.1:5]; y=a+b*x;
plot(x,y),title('Graph of y=a+bx'),xlabel('x'),ylabel('y'),grid
```

b.

```matlab
a=3; b=.0; x=[0:.1:10]; y=a+b*x;
plot(x,y),title('Graph of y=a+bx'),xlabel('x'),ylabel('y'),grid
```

c.

```matlab
a=2; b=.3; x=[0:.1:5]; y=a+b*x;
plot(x,y),title('Graph of y=a+bx'),xlabel('x'),ylabel('y'),grid
```

Solution to Exercise 3.2.2 (p. 73)

a.

```matlab
a=6; b=.8; x=[0:.01:5]; y=a+x.^b;
plot(x,y),title('Graph of y=a+x^b'),xlabel('x'),ylabel('y'),grid
```
b.

```matlab
a=6; b=.8; x=[0:.01:5]; y=a*x.^b;
plot(x,y),title('Graph of y=ax^b'),xlabel('x'),ylabel('y'),grid
```

![Graph of y=ax^b](image)

```
```

c.
```
```

```matlab
a=6; x=[0:.01:5]; y=a*sin(x);
plot(x,y),title('Graph of y=a*sin(x)'),xlabel('x'),ylabel('y'),grid
```

![Graph of y=a*sin(x)](image)
Solution to Exercise 3.2.3 (p. 74)

\[
x = \frac{\pi}{100}:\frac{\pi}{100}:10*\pi; \\
y = \frac{\sin(x)}{x}; \\
plot(x,y),title('Graph of y=sin(x)/x'),xlabel('x'),ylabel('y'),grid
\]
Figure 3.16: Graph of \(y = \frac{\sin(x)}{x} \)

Solution to Exercise 3.2.4 (p. 74)

\[
\text{Pressure} = [100330, 102200, 103930, 105270, 107400, 108470, 109400, 111140, 112200]; \\
\text{Volume} = [7.34, 7.24, 7.14, 7.04, 6.89, 6.84, 6.79, 6.69, 6.64]; \\
\text{plot(Volume, Pressure), title('Pressure Volume Graph'), xlabel('Volume'), ylabel('Pressure')}
\]
Solution to Exercise 3.2.5 (p. 74)

$$\text{P} = [29.125, 35, 43.688, 58.25, 70, 87.375, 116.5];$$
$$\text{V} = [12, 10, 8, 6, 5, 4, 3];$$
$$\text{plot(V,P), title('Pressure Volume Graph'), xlabel('Volume'), ylabel('Pressure'), grid}$$

Available for free at Connexions <http://legacy.cnx.org/content/col11371/1.9>
Solution to Exercise 3.2.6 (p. 75)

\[
\text{Solution to Exercise 3.2.7 (p. 75)}
\]

Extension=[0.00, 0.09, 0.31, 0.47, 2.13, 5.05, 10.50, 16.50, 23.70, 27.70, 34.50];
Load=[0.0, 1.9, 6.1, 9.4, 11.0, 11.7, 12.0, 11.9, 10.7, 9.3, 8.1];

plot(Extension, Load), title('Load versus Extension Curve'), xlabel('Extension'), ylabel('Load'), grid

Available for free at Connexions <http://legacy.cnx.org/content/col11371/1.9>
Solution to Exercise 3.2.8 (p. 76)

The data can be entered using Variable Editor:

![Variable Editor Image]

Then execute the following:

```matlab
plot(Strain, Stress), title('Stress versus Strain Curve'), xlabel('Strain [mm/mm]'), ylabel('Stress [mPa]'), grid
```

Available for free at Connexions <http://legacy.cnx.org/content/col11371/1.9>
Chapter 4

Introductory Programming

4.1 Writing Scripts to Solve Problems

MATLAB provides scripting and automation tools that can simplify repetitive computational tasks. For example, a series of commands executed in a MATLAB session to solve a problem can be saved in a script file called an m-file. An m-file can be executed from the command line by typing the

1This content is available online at <http://legacy.cnx.org/content/m41440/1.6/>.

Available for free at Connexions <http://legacy.cnx.org/content/col11371/1.9>

87
name of the file or by pressing the run button in the built-in text editor tool bar.

4.1.1 Script Files

A script is a file containing a sequence of MATLAB statements. Script files have a filename extension of .m. By typing the filename at the command prompt, we can run the script and obtain results in the command window.

![MATLAB Interface](image)

Figure 4.1: Number of m-files are displayed in the Current Folder sub-window.

A sample m-file named `ThermalConductivity.m` is displayed in Text Editor below. Note the triangle (in green) run button in the tool bar, pressing this button executes the script in the command window.

Available for free at Connexions <http://legacy.cnx.org/content/col11371/1.9>
Figure 4.2: The content of ThermalConductivity.m file is displayed in Text Editor.

Now let us see how an m-file is created and executed.

Example 4.1
A cylindrical acetylene bottle with a radius \(r = 0.3 \) m has a hemispherical top. The height of the cylindrical part is \(h = 1.5 \) m. Write a simple script to calculate the volume of the acetylene bottle.

To solve this problem, we will first apply the volume of cylinder equation (4.1). Using the volume of sphere equation (4.2), we will calculate the volume of hemisphere (4.3). The total volume of the acetylene bottle is found with the sum of volumes equation (4.4).

\[
V_{\text{cylinder}} = \pi r^2 h \quad \text{(4.1)}
\]

\[
V_{\text{sphere}} = \frac{4}{3} \pi r^3 \quad \text{(4.2)}
\]

\[
V_{\text{top}} = \frac{2}{3} \pi r^3 \quad \text{(4.3)}
\]
To write the script, we will use the built-in text editor. From the menu bar select File > New > Script. The text editor window will open in a separate window. First save this file as AcetyleneBottle.m. In that window type the following code paying attention to the use of percentage and semicolon symbols to comment out the lines and suppress the output, respectively.

% This script computes the volume of an acetylene bottle with a radius \(r = 0.3 \) m, % a hemispherical top and a height of cylindrical part \(h = 1.5 \) m.
\(r = 0.3; \) % Radius \([\text{m}]\)
\(h = 1.5; \) % Height \([\text{m}]\)
\(\text{Vol_top} = (2\pi r^3)/3; \) % Calculating the volume of hemispherical top \([\text{m}^3]\)
\(\text{Vol_cyl} = \pi r^2 h; \) % Calculating the volume of cylindrical bottom \([\text{m}^3]\)
\(\text{Vol_total} = \text{Vol_top} + \text{Vol_cyl} \) % Calculating the total volume of acetylene bottle \([\text{m}^3]\)

Figure 4.3: Script created with the built-in text editor.
After running the script by pressing the green button in the Text Editor tool bar, the output is displayed in the command window as shown below.

![MATLAB output in command window](image)

Figure 4.4: The MATLAB output in the command window.

4.1.2 The `input` Function

Notice that the script we have created above (Example 4.1) is not interactive and computes the total volume only for the variables defined in the m-file. To make this script interactive we will make some changes to the existing `AcetyleneBottle.m` by adding `input` function and save it as `AcetyleneBottleInteractive.m`.

The syntax for `input` is as follows:

```
userResponse = input('prompt')
```

Example 4.2

Now, let’s incorporate the `input` command in `AcetyleneBottleInteractive.m` as shown below and the subsequent figure:

Available for free at Connexions [http://legacy.cnx.org/content/col11371/1.9>
This script computes the volume of an acetylene bottle
user is prompted to enter a radius r for a hemispherical top
a height h for a cylindrical part

```
r=input('Enter the radius of acetylene bottle in meters ');
h=input('Enter the height of cylindrical part of acetylene bottle in meters ');
Vol_top=(2*pi*r^3)/3; % Calculating the volume of hemispherical top [m3]
Vol_cyl=pi*r^2*h; % Calculating the volume of cylindrical bottom [m3]
Vol_total=Vol_top+Vol_cyl % Calculating the total volume of acetylene bottle [m3]
```

![Image of MATLAB script]

Figure 4.5: Interactive script that computes the volume of acetylene cylinder.

The command window upon run will be as follows, note that user keys in the radius and height values and the same input values result in the same numerical answer as in example (Example 4.1) which proves that the computation is correct.
4.1.3 The disp Function

As you might have noticed, the output of our script is not displayed in a well-formatted fashion. Using disp, we can control how text or arrays are displayed in the command window. For example, to display a text string on the screen, type in disp('Hello world!'). This command will return our friendly greeting as follows: Hello world!

disp(variable) can be used to display only the value of a variable. To demonstrate this, issue the following command in the command window:

\[
b = [1 \ 2 \ 3 \ 4 \ 5]
\]

We have created a row vector with 5 elements. The following is displayed in the command window:

\[
\gg b = [1 \ 2 \ 3 \ 4 \ 5]
\]

b =
Now if we type in `disp(b)` and press enter, the variable name will not be displayed but its value will be printed on the screen:

```
≫ disp(b)
1  2  3  4  5
```

The following example demonstrates the usage of `disp` function.

Example 4.3

Now, let's open `AcetyleneBottleInteractive.m` file and modify it by using the `disp` command. First save the file as `AcetyleneBottleInteractiveDisp.m`, so that we don't accidentally introduce errors to a working file and also we can easily find this particular file that utilizes the `disp` command in the future. The new file should contain the code below:

```matlab
% This script computes the volume of an acetylene bottle
% user is prompted to enter
% a radius r for a hemispherical top
% a height h for a cylindrical part
clc % Clear screen
disp('This script computes the volume of an acetylene bottle')
r=input('Enter the radius of acetylene bottle in meters ');
h=input('Enter the height of cylindrical part of acetylene bottle in meters ');
Vol_top=(2*pi*r^3)/3; % Calculating the volume of hemispherical top [m3]
Vol_cyl=pi*r^2*h; % Calculating the volume of cylindrical bottom [m3]
Vol_total=Vol_top+Vol_cyl; % Calculating the total volume of acetylene bottle [m3]
disp(' ') % Display blank line
disp('The volume of the acetylene bottle is') % Display text
disp(Vol_total) % Display variable
```

Your screen output should look similar to the one below:

```
This script computes the volume of an acetylene bottle
Enter the radius of acetylene bottle in meters .3
Enter the height of cylindrical part of acetylene bottle in meters 1.5

The volume of the acetylene bottle is
0.4807
```
4.1.4 The num2str Function

The num2str function allows us to convert a number to a text string. Basic syntax is \(\text{str} = \text{num2str}(A) \) where variable \(A \) is converted to a text and stored in \(\text{str} \). Let's see how it works in AcetyleneBottleInteractiveDisp.m. Remember to save the file with a different name before editing it, for example, AcetyleneBottleInteractiveDisp1.m.

Example 4.4

Add the following line of code to your file:

\[
\text{str} = \left[\text{'The volume of the acetylene bottle is '}, \text{num2str(Vol_total)}, \text{' cubic meters.'} \right];
\]

Notice that the three arguments in \(\text{str} \) are separated with commas. The first argument is a simple text that is contained in '. The second argument is where the number to string conversion take place. And finally the third argument is also a simple text that completes the sentence displayed on the screen. Using semicolon at the end of the line suppresses the output. In the next line of our script, we will call \(\text{str} \) with \(\text{disp(str)} \).

AcetyleneBottleInteractiveDisp1.m file should look like this:

```matlab
% This script computes the volume of an acetylene bottle
% user is prompted to enter
% a radius r for a hemispherical top
% a height h for a cylindrical part
clc % Clear screen
disp('This script computes the volume of an acetylene bottle:')
disp(' ') % Display blank line
r=input('Enter the radius of acetylene bottle in meters ');
h=input('Enter the height of cylindrical part of acetylene bottle in meters ');
Vol_top=(2*pi*r^3)/3; % Calculating the volume of hemispherical top [m3]
Vol_cyl=pi*r^2*h; % Calculating the volume of cylindrical bottom [m3]
Vol_total=Vol_top+Vol_cyl; % Calculating the total volume of acetylene bottle [m3]
disp(' ') % Display blank line
str = ['The volume of the acetylene bottle is ', num2str(Vol_total), ' cubic meters.'];
disp(str);
```

Running the script should produce the following:

This script computes the volume of an acetylene bottle:

Enter the radius of acetylene bottle in meters .3
Enter the height of cylindrical part of acetylene bottle in meters 1.5

The volume of the acetylene bottle is 0.48066 cubic meters.

Available for free at Connexions <http://legacy.cnx.org/content/col11371/1.9>
4.1.5 The `fopen` and `fclose` Functions

The first command is used to open or create a file. The basic syntax for `fopen` is as follows:

```
fid = fopen(filename, permission)
```

For example, `fo = fopen('output.txt', 'w');` opens or creates a new file named `output.txt` and sets the permission for writing. If the file already exists, it discards the existing contents.

`fclose` command is used to close a file. For example, if we type in `fclose(fo);`, we close the file that was created above.

4.1.6 The `fprintf` Function

`fprintf` function writes formatted data to the computer monitor or a file. This command can be used to save the results of a calculation to a file. To do this, first we create or open an output file with `fopen`, second we issue the `fprintf` command and then we close the output file with `fclose`.

The simplified syntax for `fprintf` is as follows:

```
fprintf=(fid, format, variable1, variable 2, ...)
```

Example 4.5

Add the following lines to your .m file:

```
fo = fopen('output.txt', 'w');
fprintf(fo,'The radius of acetylene bottle: %g meters n', r);
fprintf(fo,'The height of cylindrical part of acetylene bottle: %g meters n', h);
fprintf(fo,'The volume of the acetylene bottle: %g cubic meters. n', Vol_total);
fclose(fo);
```

Here, we first create the `output.txt` file that will contain the following three variables `r`, `h` and `Vol_total`. In the `fo` output file, the variables are formatted with `%g` which automatically uses the shortest display format. You can also use `%i` or `%d` for integers and `%e` for scientific notation. In our script above, the `n` (newline) moves the cursor to the next line.

Naming the new .m file as `AcetyleneBottleInteractiveOutput.m`, it should look like this:

```
% This script computes the volume of an acetylene bottle
% user is prompted to enter
% a radius r for a hemispherical top
% a height h for a cylindrical part
clc
```

Available for free at Connexions <http://legacy.cnx.org/content/col11371/1.9>
This script computes the volume of an acetylene bottle:

```
disp('Enter the radius of acetylene bottle in meters');
r=input('Enter the height of cylindrical part of acetylene bottle in meters');
Vol_top=(2*pi*r^3)/3; % Calculating the volume of hemispherical top [m3]
Vol_cyl=pi*r^2*h; % Calculating the volume of cylindrical bottom [m3]
Vol_total=Vol_top+Vol_cyl; % Calculating the total volume of acetylene bottle [m3]
disp(' ') % Display blank line
str = [ 'The volume of the acetylene bottle is ', num2str(Vol_total), ' cubic meters.' ];
disp(str);
fo = fopen('output.txt', 'w');
fprintf(fo,'The radius of acetylene bottle: %g meters
', r);
fprintf(fo,'The height of cylindrical part of acetylene bottle: %g meters
', h);
fprintf(fo,'The volume of the acetylene bottle: %g cubic meters.
', Vol_total);
fclose(fo);
```

Upon running the file, the output.txt file will display the following:

The radius of acetylene bottle: 0.3 meters
The height of cylindrical part of acetylene bottle: 1.5 meters
The volume of the acetylene bottle: 0.480664 cubic meters.

4.1.7 Loops

In programming, a loop executes a set of code a specified number of times or until a condition is met.

4.1.7.1 For Loop

This loop iterates an index variable from an initial value using a specified increment to a final value and runs a set of code. The for loop syntax is the following:

```
for loop_index=vector_statement
    code
    ...
    code
end
```

Example 4.6

Calculate \(y = \cos(x) \) for \(-\pi \leq x \leq \pi\) using an increment of \(\frac{\pi}{4}\).
for \(x = -\pi: \pi/4: \pi \)
\[y = \cos(x); \]
\[\text{fprintf}('\%8.3f %8.2f \n', x, y); \]
end

In the brief script above, \(x \) is the loop index that is initiated from \(-\pi\) and incremented with \(\frac{\pi}{4} \) to a final value of \(\pi \). At the end of each increment, \(y = \cos(x) \) is calculated and displayed with the \text{fprintf} command. This process continues until \(x = \pi \).

From a previous exercise we know \(\backslash n \) creates a new line when included in the \text{fprintf} command. Here, we also use \%8.3f to specify eight spaces and three decimal places for the first variable \(x \). Likewise \%8.2f specifies the formatting for the second variable \(y \) but in this case, \(y \) is displayed with two decimal places. The result is the following:

\[
\begin{array}{cc}
-3.142 & -1.00 \\
-2.356 & -0.71 \\
-1.571 & 0.00 \\
-0.785 & 0.71 \\
0.000 & 1.00 \\
0.785 & 0.71 \\
1.571 & 0.00 \\
2.356 & -0.71 \\
3.142 & -1.00 \\
\end{array}
\]

We can improve our code by adding formatting lines as follows:

clear; clc;
\[\text{fprintf}(' x \cos(x)\backslash n'); \] % title row
\[\text{fprintf(' \----------------\n');} \] % title row
\[\text{for } x=-\pi:\pi/4:\pi \text{ \% loop_index=initial_value:increment_value:final_value} \]
\[y=\cos(x); \text{ \% code to calculate } \cos(x) \]
\[\text{fprintf('\%8.3f %8.2f \n', x, y); \% code to print the output to screen} \]
end

Screen output:

\[
\begin{array}{cc}
x & \cos(x) \\
\---------------- \\
-3.142 & -1.00 \\
-2.356 & -0.71 \\
-1.571 & 0.00 \\
\end{array}
\]

Available for free at Connexions <http://legacy.cnx.org/content/col11371/1.9>
4.1.7.2 While Loop

Like the for loop, a while loop executes blocks of code over and over again however it runs as long as the test condition remains true. The syntax of a while loop is

```
while test_condition
    code
    ...
    code
end
```

Example 4.7

Using a while loop, calculate $y = \cos(x)$ for $-\pi \leq x \leq \pi$ using an increment of $\frac{\pi}{4}$.

This time we need to initialize the x value outside the loop and then state the test condition in the first line of the while loop. We also need to create an increment statement within the while loop:

```
x=-pi;
    while x<=pi
        y=cos(x);
        fprintf('%8.3f %8.2f
',x,y);
        x = x + (pi/4);
    end
```

The result is the same as that of the previous example:

```
-3.142   -1.00
-2.356   -0.71
-1.571    0.00
-0.785    0.71
  0.000    1.00
  0.785    0.71
```

Available for free at Connexions <http://legacy.cnx.org/content/col11371/1.9>
Now we can improve the code by adding extra formatting lines and comments:

```matlab
clear; clc;
fprintf(’ x cos(x)
’); % title row
fprintf(’ ----------------
’); % title row
x=-pi; % initiating the x value
while x<=pi % stating the test condition
    y=cos(x); % calculating the value of y
    fprintf(’%8.3f %8.2f
’,x,y); % printing a and y
    x = x + (pi/4); % iterating to the next step
end
```

The result should look the same as before.

```
x        cos(x)
----------
-3.142   -1.00
-2.356   -0.71
-1.571   0.00
-0.785   0.71
 0.000   1.00
 0.785   0.71
 1.571   0.00
 2.356  -0.71
 3.142  -1.00
```

4.1.8 The `diary` Function

Instead of writing a script from scratch, we sometimes solve problems in the Command Window as if we are using a scientific calculator. The steps we perform in this fashion can be used to create an m-file. For example, the `diary` function allows us to record a MATLAB session in a file and retrieve it for review. Reviewing the file and by copying relevant parts of it and pasting them into an m-file, a script can be written easily.

Typing `diary` at the MATLAB prompt toggles the diary mode on and off. As soon as the diary mode is turned on, a file called `diary` is created in the current directory. If you like to save that file with a specific name, say for example problem16, type

```matlab
diary problem16
```

Available for free at Connexions <http://legacy.cnx.org/content/col11371/1.9>
diary problem16.txt.
A file named problem16.txt will be created. The following is the content of a diary file called problem16.txt. Notice that in that session, the user is executing the four files we created earlier. The user’s keyboard input and the resulting display output is recorded in the file. The session is ended by typing diary which is printed in the last line. This might be useful to create a record of your work to hand in with a lab or to create the beginnings of an m-file.

AcetyleneBottle

Vol_total =

0.4807

AcetyleneBottleInteractive
Enter the radius of acetylene bottle in meters .3
Enter the height of cylindrical part of acetylene bottle in meters 1.5

Vol_total =

0.4807

AcetyleneBottleInteractiveDisp
This script computes the volume of an acetylene bottle
Enter the radius of acetylene bottle in meters .5
Enter the height of cylindrical part of acetylene bottle in meters 1.6

The volume of the acetylene bottle is

1.5184

AcetyleneBottleInteractiveDisp1
This script computes the volume of an acetylene bottle:

Enter the radius of acetylene bottle in meters .9
Enter the height of cylindrical part of acetylene bottle in meters 1.9

The volume of the acetylene bottle is 6.3617 cubic meters.
diary

4.1.9 Style Guidelines

Try to apply the following guidelines when writing your scripts:

Available for free at Connexions <http://legacy.cnx.org/content/col11371/1.9>
• Share your code or programs with others, consider adopting one of Creative Commons2 or GNU General Public License3 schemes
• Include your name and contact info in the opening lines
• Use comments liberally
• Group your code and use proper indentation
• Use white space liberally
• Use descriptive names for your variables
• Use descriptive names for your m-files

\textbf{4.1.10 Summary of Key Points}

1. A script is a file containing a sequence of MATLAB statements. Script files have a filename extension of .m.
2. Functions such as \texttt{input}, \texttt{disp} and \texttt{num2str} can be used to make scripts interactive,
3. \texttt{fopen}, \texttt{fprintf} and \texttt{fclose} functions are used to create output files,
4. A \texttt{for} loop is used to repeat a specific block of code a definite number of times.
5. A \texttt{while} loop is used to repeat a specific block of code an indefinite number of times, until a condition is met.
6. The \texttt{diary} function is useful to record a MATLAB command window session from which an m-file can be easily created,
7. Various style guidelines covered here help improve our code.

\textbf{4.2 Problem Set4}

\textbf{Exercise 4.2.1} \hspace{1cm} (\textit{Solution on p. 105.})

Write a script that will ask for pressure value in psi and display the equivalent pressure in kPa with a statement, such as "The converted pressure is: ..."

\textbf{Exercise 4.2.2} \hspace{1cm} (\textit{Solution on p. 105.})

Write a script that generates a table of conversions from Fahrenheit to Celsius temperatures for a range and increment entered by the user, such as

Enter the beginning temperature in F:
Enter the ending temperature in F:
Enter the increment value:

Test your script with 20 the beginning Fahrenheit value, 200 the ending Fahrenheit value and 20 the increment.

2http://creativecommons.org/
3http://www.gnu.org/licenses/gpl-3.0.html
4This content is available online at <http://legacy.cnx.org/content/m41536/1.2/>.

Available for free at Connexions <http://legacy.cnx.org/content/col11371/1.9>
Exercise 4.2.3
(Pascal’s Law states that pressure is transmitted undiminished in all directions throughout a fluid at rest. (See the illustration below). An initial force of 150 N is transmitted from a piston of 25 mm^2 to a piston of 100 mm^2. This force is progressively increased up to 200 N. Write a script that computes the corresponding load carried by the larger piston and tabulate your results.

![Figure 4.7: A simple hydraulic system.](image)

Exercise 4.2.4
(Modify your script in previous problem (Exercise 4.2.3) so that the user provides the following input:

Enter the initial force in N:
Enter the final force in N:
Enter the increment value:
Enter the area of small piston in mm^2:
Enter the area of big piston in mm^2:

Test your script with 150, 200, 10, 25 and 100 with respect to each input variable.

Exercise 4.2.5
(Write a script to solve the Stress-Strain problem in the Problem Set (Problem 2.2.9) Available for free at Connexions <http://legacy.cnx.org/content/col11371/1.9>
Exercise 4.2.6 (Solution on p. 109.)
Modify the script, you wrote above (Exercise 4.2.5) and plot an annotated Stress-Strain graph.
Solutions to Exercises in Chapter 4

Solution to Exercise 4.2.1 (p. 102)

% This script converts pressures from psi to kPa
% User is prompted to enter pressure in psi
clc % Clear screen
disp('This script converts pressures from psi to kPa:')
disp('') % Display blank line
psi=input('What is the pressure value in psi? ');
kPa=psi*6.894757; % Calculating pressure in kPa
disp('') % Display blank line
str = ['The converted pressure is: ', num2str(kPa), ' kPa.'];
disp(str);

The script output is as follows:

This script converts pressures from psi to kPa:

What is the pressure value in psi? 150

The converted pressure is: 1034.2135 kPa.

Solution to Exercise 4.2.2 (p. 102)

% This script generates a table of conversions
% From Fahrenheit to Celsius temperatures
clc % Clear screen
disp('This script generates a table of conversions from Fahrenheit to Celsius')
disp('') % Display blank line
lowerF=input('Enter the beginning temperature in F: ');
upperF=input('Enter the ending temperature in F: ');
increment=input('Enter the increment value: ');
Fahrenheit=[lowerF:increment:upperF]; % Creating a row vector with F values
Celsius=5/9*(Fahrenheit-32); % Converting from F to C
disp('') % Display blank line
str = ['Fahrenheit Celsius '];% Displaying table header
disp(str);
% Tabulating results in two columns, ' is being used to transpose row to column
disp([Fahrenheit' Celsius'])

Available for free at Connexions <http://legacy.cnx.org/content/col11371/1.9>
The script output is as follows:

This script generates a table of conversions from Fahrenheit to Celsius

Enter the beginning temperature in F: 20
Enter the ending temperature in F: 200
Enter the increment value: 20

Fahrenheit Celsius
 20.0000 -6.6667
 40.0000 4.4444
 60.0000 15.5556
 80.0000 26.6667
 100.0000 37.7778
 120.0000 48.8889
 140.0000 60.0000
 160.0000 71.1111
 180.0000 82.2222
 200.0000 93.3333

Solution to Exercise 4.2.3 (p. 103)

% This script computes the load carried by the larger piston in a hydraulic system
clc % Clear screen
disp('This script computes the load carried by the larger piston in a hydraulic system')
disp('') % Display blank line
initialF=150;
finalF=200;
icrement=10;
area1=25;
area2=100;
F1=[initialF:increment:finalF]; % Creating a row vector with F1 values
F2=F1*area2/area1; % Calculating F2 values
disp('') % Display blank line
str = [' F1 F2 '];% Displaying table header
disp(str);
disp([F1' F2']) % Tabulating results in two columns, ’ is being used to transpose row to column

The script output is as follows:
This script computes the load carried by the larger piston in a hydraulic system.

<table>
<thead>
<tr>
<th>F1</th>
<th>F2</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>600</td>
</tr>
<tr>
<td>160</td>
<td>640</td>
</tr>
<tr>
<td>170</td>
<td>680</td>
</tr>
<tr>
<td>180</td>
<td>720</td>
</tr>
<tr>
<td>190</td>
<td>760</td>
</tr>
<tr>
<td>200</td>
<td>800</td>
</tr>
</tbody>
</table>

Solution to Exercise 4.2.4 (p. 103)

The script output is as follows:

Enter the initial force in N: 150
Enter the final force in N: 200
Enter the increment value: 10
Enter the area of small piston in mm^2: 25
Enter the area of big piston in mm^2: 100

F1 F2
150 600
Solution to Exercise 4.2.5 (p. 103)
The m-file contains the following:

```matlab
% This script uses readings from a Tensile test and
% Computes Strain and Stress values
clc % Clear screen
disp('This script uses readings from a Tensile test and')
disp('Computes Strain and Stress values')
disp('') % Display a blank line
Specimen_dia=12.7; % Specimen diameter in mm
% Load in kN
Load_kN=[0;4.89;9.779;14.67;19.56;24.45;...
27.62;29.39;32.68;33.95;34.58;35.22;...
35.72;40.54;48.39;59.03;65.87;69.42;...
69.67;68.15;60.81];
% Gage length in mm
Length_mm=[50.8;50.8102;50.8203;50.8305;...
50.8406;50.8508;50.8610;50.8711;...
50.9016;50.9270;50.9524;50.9778;...
51.0032;51.816;53.340;55.880;58.420;...
60.96;61.468;63.5;66.04];
% Calculate x-sectional area im m2
Cross_sectional_Area=pi/4*((Specimen_dia/1000)^2);
% Calculate change in length, initial length is 50.8 mm
Delta_L=Length_mm-50.8;
% Calculate Stress in MPa
Sigma=(Load_kN./Cross_sectional_Area)*10^(-3);
% Calculate Strain in mm/mm
Epsilon=Delta_L./50.8;
str = ['Specimen diameter is ', num2str(Specimen_dia), ' mm.'];
disp(str);
Results=[Load_kN Length_mm Delta_L Sigma Epsilon];
% Tabulated results
disp(' Load Length Delta L Stress Strain')
disp(Results)
```

After executed, the command window output is:

Available for free at Connexions <http://legacy.cnx.org/content/col11371/1.9>
This script uses readings from a Tensile test and Computes Strain and Stress values

Specimen diameter is 12.7 mm.

<table>
<thead>
<tr>
<th>Load</th>
<th>Length</th>
<th>Delta L</th>
<th>Stress</th>
<th>Strain</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>50.8000</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4.8900</td>
<td>50.8102</td>
<td>0.0102</td>
<td>38.6022</td>
<td>0.0002</td>
</tr>
<tr>
<td>9.7790</td>
<td>50.8203</td>
<td>0.0203</td>
<td>77.1964</td>
<td>0.0004</td>
</tr>
<tr>
<td>14.6700</td>
<td>50.8305</td>
<td>0.0305</td>
<td>115.8065</td>
<td>0.0006</td>
</tr>
<tr>
<td>19.5600</td>
<td>50.8406</td>
<td>0.0406</td>
<td>154.4086</td>
<td>0.0008</td>
</tr>
<tr>
<td>24.4500</td>
<td>50.8508</td>
<td>0.0508</td>
<td>193.0108</td>
<td>0.0010</td>
</tr>
<tr>
<td>27.6200</td>
<td>50.8610</td>
<td>0.0610</td>
<td>218.0351</td>
<td>0.0012</td>
</tr>
<tr>
<td>29.3900</td>
<td>50.8711</td>
<td>0.0711</td>
<td>232.0076</td>
<td>0.0014</td>
</tr>
<tr>
<td>32.6800</td>
<td>50.9016</td>
<td>0.1016</td>
<td>257.9792</td>
<td>0.0020</td>
</tr>
<tr>
<td>33.9500</td>
<td>50.9270</td>
<td>0.1270</td>
<td>268.0047</td>
<td>0.0025</td>
</tr>
<tr>
<td>34.5800</td>
<td>50.9524</td>
<td>0.1524</td>
<td>272.9780</td>
<td>0.0030</td>
</tr>
<tr>
<td>35.2200</td>
<td>50.9778</td>
<td>0.1778</td>
<td>278.0302</td>
<td>0.0035</td>
</tr>
<tr>
<td>35.7200</td>
<td>51.0032</td>
<td>0.2032</td>
<td>281.9773</td>
<td>0.0040</td>
</tr>
<tr>
<td>40.5400</td>
<td>51.8160</td>
<td>1.0160</td>
<td>320.0269</td>
<td>0.0200</td>
</tr>
<tr>
<td>48.3900</td>
<td>53.3400</td>
<td>2.5400</td>
<td>381.9955</td>
<td>0.0500</td>
</tr>
<tr>
<td>59.0300</td>
<td>55.8800</td>
<td>5.0800</td>
<td>465.9888</td>
<td>0.1000</td>
</tr>
<tr>
<td>65.8700</td>
<td>58.4200</td>
<td>7.6200</td>
<td>519.9844</td>
<td>0.1500</td>
</tr>
<tr>
<td>69.4200</td>
<td>60.9600</td>
<td>10.1600</td>
<td>548.0085</td>
<td>0.2000</td>
</tr>
<tr>
<td>69.6700</td>
<td>61.4680</td>
<td>10.6680</td>
<td>549.9820</td>
<td>0.2100</td>
</tr>
<tr>
<td>68.1500</td>
<td>63.5000</td>
<td>12.7000</td>
<td>537.9830</td>
<td>0.2500</td>
</tr>
<tr>
<td>60.8100</td>
<td>66.0400</td>
<td>15.2400</td>
<td>480.0403</td>
<td>0.3000</td>
</tr>
</tbody>
</table>

Solution to Exercise 4.2.6 (p. 104)
Edited script contains the plot commands:

% This script uses readings from a Tensile test and
% Computes Strain and Stress values
clc % Clear screen
disp('This script uses readings from a Tensile test and')
disp('Computes Strain and Stress values')
disp(' ')
Specimen_dia=12.7; % Specimen diameter in mm
% Load in kN
Load_kN=[0;4.89;9.779;14.67;19.56;24.45;27.62;29.39;32.68;33.95;34.58;35.22;35.72;40.54;48.39;59.03;65.87;69.42;69.67;68.15;60.8100];

Available for free at Connexions <http://legacy.cnx.org/content/col11371/1.9>
% Gage length in mm
Length_mm=[50.8;50.8102;50.8203;50.8305;...
 50.8406;50.8508;50.8610;50.8711;...
 50.9016;50.9270;50.9524;50.9778;...
 51.0032;51.816;53.340;55.880;58.420;...
 60.96;61.468;63.5;66.04];

% Calculate x-sectional area im m2
Cross_sectional_Area=pi/4*((Specimen_dia/1000)^2);
% Calculate change in length, initial length is 50.8 mm
Delta_L=Length_mm-50.8;
% Calculate Stress in MPa
Sigma=(Load_kN./Cross_sectional_Area)*10^(-3);
% Calculate Strain in mm/mm
Epsilon=Delta_L./50.8;
str = ['Specimen diameter is ', num2str(Specimen_dia), ' mm.'];
disp(str);
Results=[Load_kN Length_mm Delta_L Sigma Epsilon];
% Tabulated results
disp(' Load Length Delta L Stress Strain')
disp(Results);
% Plot Stress versus Strain
plot(Epsilon,Sigma)
title('Stress versus Strain Curve')
xlabel('Strain [mm/mm]')
ylabel('Stress [mPa]')
grid

In addition to Command Window output, the following plot is generated:
Chapter 5

Interpolation

5.1 Interpolation

Linear interpolation is one of the most common techniques for estimating values between two given data points. For example, when using steam tables, we often have to carry out interpolations. With this technique, we assume that the function between the two points is linear. MATLAB has a

\[\text{This content is available online at <http://legacy.cnx.org/content/m41455/1.3/>}. \]

Available for free at Connexions <http://legacy.cnx.org/content/col11371/1.9>
built-in interpolation function.

5.1.1 The interp1 Function

Give an x-y table, \(y_{\text{new}} = \text{interp1}(x, y, x_{\text{new}}) \) interpolates to find \(y_{\text{new}} \). Consider the following examples:

Example 5.1
To demonstrate how the interp1 function works, let us create an x-y table with the following commands;

\[
\begin{align*}
x & = 0:5; \\
y & = [0, 20, 60, 68, 77, 110];
\end{align*}
\]

To tabulate the output, we can use

\[
[x', y']
\]

The result is

\[
\text{ans} =
\begin{bmatrix}
0 & 0 \\
1 & 20 \\
2 & 60 \\
3 & 68 \\
4 & 77 \\
5 & 110
\end{bmatrix}
\]

Suppose we want to find the corresponding value for 1.5 or interpolate for 1.5. Using \(y_{\text{new}} = \text{interp1}(x, y, x_{\text{new}}) \) syntax, let us type in:

\[
y_{\text{new}} = \text{interp1}(x, y, 1.5)
\]

\[
y_{\text{new}} = 40
\]

Example 5.2
The table we created above has only 6 elements in it and suppose we need a more detailed table. In order to do that, instead of a single new x value, we can define an array of new x values, the interp1 function returns an array of new y values:

Available for free at Connexions <http://legacy.cnx.org/content/col11371/1.9>
new_x = 0:0.2:5;
new_y = interp1(x,y,new_x);

Let's display this table

[new_x',new_y']

The result is

ans =

 0 0
 0.2000 4.0000
 0.4000 8.0000
 0.6000 12.0000
 0.8000 16.0000
 1.0000 20.0000
 1.2000 28.0000
 1.4000 36.0000
 1.6000 44.0000
 1.8000 52.0000
 2.0000 60.0000
 2.2000 61.6000
 2.4000 63.2000
 2.6000 64.8000
 2.8000 66.4000
 3.0000 68.0000
 3.2000 69.8000
 3.4000 71.6000
 3.6000 73.4000
 3.8000 75.2000
 4.0000 77.0000
 4.2000 83.6000
 4.4000 90.2000
 4.6000 96.8000
 4.8000 103.4000
 5.0000 110.0000

Example 5.3

Using the table below, find the internal energy of steam at 215 °C and the temperature if the internal energy is 2600 kJ/kg (use linear interpolation).
First let us enter the temperature and energy values

\[
\text{temperature} = [100, 150, 200, 250, 300, 400, 500];
\]
\[
\text{energy} = [2506.7, 2582.8, 2658.1, 2733.7, 2810.4, 2967.9, 3131.6];
\]

[temperature’, energy’]

returns

\[
\text{ans} =
\]

\[
1.0e+003 *
\]

\[
0.1000 2.5067
0.1500 2.5828
0.2000 2.6581
0.2500 2.7337
0.3000 2.8104
0.4000 2.9679
0.5000 3.1316
\]

issue the following for the first question:

\[
\text{new_energy} = \text{interp1(temperature, energy, 215)}
\]

returns

\[
\text{new_energy} =
\]

\[
2.6808e+003
\]
Now, type in the following for the second question:

```matlab
new_temperature = interp1(energy,temperature,2600)
returns

new_temperature =

161.4210
```

5.1.2 Summary of Key Points

1. Linear interpolation is a technique for estimating values between two given data points,
2. Problems involving steam tables often require interpolated data,
3. MATLAB has a built-in interpolation function.

5.2 Problem Set

Exercise 5.2.1
(Solution on p. 120.)
Determine the saturation temperature, specific liquid enthalpy, specific enthalpy of evaporation and specific enthalphy of dry steam at a pressure of 2.04 MPa.

<table>
<thead>
<tr>
<th>Pressure [MN/m²]</th>
<th>Saturation Temperature [°C]</th>
<th>hₗ [kJ/kg]</th>
<th>h fg [kJ/kg]</th>
<th>h g [kJ/kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>214.9</td>
<td>920.0</td>
<td>1878.2</td>
<td>2798.2</td>
</tr>
<tr>
<td>2.0</td>
<td>212.4</td>
<td>908.6</td>
<td>1888.6</td>
<td>2797.2</td>
</tr>
</tbody>
</table>

Table 5.2: An extract from steam tables

Exercise 5.2.2
(Solution on p. 120.)
The following table gives data for the specific heat as it changes with temperature for a perfect gas. (Data available for download).

2This content is available online at <http://legacy.cnx.org/content/m41624/1.2/>.
3See the file at <http://legacy.cnx.org/content/m41624/latest/Chp5_Exercise2.zip>
<table>
<thead>
<tr>
<th>Temperature [F]</th>
<th>Specific Heat [BTU/lbmF]</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>0.118</td>
</tr>
<tr>
<td>50</td>
<td>0.120</td>
</tr>
<tr>
<td>75</td>
<td>0.123</td>
</tr>
<tr>
<td>100</td>
<td>0.125</td>
</tr>
<tr>
<td>125</td>
<td>0.128</td>
</tr>
<tr>
<td>150</td>
<td>0.131</td>
</tr>
</tbody>
</table>

Table 5.3: Change of specific heat with temperature

Using interp1 function calculate the specific heat for 30 F, 70 F and 145 F.

Exercise 5.2.3
(Solution on p. 121.)

For the problem above (Exercise 5.2.2), create a more detailed table in which temperature varies between 25 and 150 with 5 F increments and corresponding specific heat values.

Exercise 5.2.4
(Solution on p. 122.)

During a 12-hour shift a fuel tank has varying levels due to consumption and transfer pump automatically cutting in and out to maintain a safe fuel level. The following table of fuel tank level versus time (Data available for download\(^5\)) is missing readings for 5 and 9 AM. Using linear interpolation, estimate the fuel level at those times.

<table>
<thead>
<tr>
<th>Time [hours, AM]</th>
<th>Tank level [m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:00</td>
<td>1.5</td>
</tr>
<tr>
<td>2:00</td>
<td>1.7</td>
</tr>
<tr>
<td>3:00</td>
<td>2.3</td>
</tr>
<tr>
<td>4:00</td>
<td>2.9</td>
</tr>
<tr>
<td>5:00</td>
<td>?</td>
</tr>
<tr>
<td>6:00</td>
<td>2.6</td>
</tr>
<tr>
<td>7:00</td>
<td>2.5</td>
</tr>
<tr>
<td>8:00</td>
<td>2.3</td>
</tr>
<tr>
<td>9:00</td>
<td>?</td>
</tr>
<tr>
<td>10:00</td>
<td>2.0</td>
</tr>
<tr>
<td>11:00</td>
<td>1.8</td>
</tr>
<tr>
<td>12:00</td>
<td>1.3</td>
</tr>
</tbody>
</table>

\(^{5}\)See the file at http://legacy.cnx.org/content/m41624/latest/Chp5_Exercise4.zip

Available for free at Connexions http://legacy.cnx.org/content/col11371/1.9
Table 5.4: Fuel tank level versus time
Solutions to Exercises in Chapter 5

Solution to Exercise 5.2.1 (p. 117)
MATLAB solution is as follows:

```matlab
≫ pressure=[2.1 2.0];
≫ sat_temp=[214.9 212.4];
≫ h_f=[920 908.6];
≫ h_fg=[1878.2 1888.6];
≫ h_g=[2798.2 2797.2];

≫ sat_temp_new=interp1(pressure,sat_temp,2.04)

sat_temp_new =

213.4000

≫ h_f_new=interp1(pressure,h_f,2.04)

h_f_new =

913.1600

≫ h_fg_new=interp1(pressure,h_fg,2.04)

h_fg_new =

1.8844e+003

≫ h_g_new=interp1(pressure,h_g,2.04)

h_g_new =

2.7976e+003
```

Solution to Exercise 5.2.2 (p. 117)
MATLAB solution is as follows:

```matlab
≫ temperature=[25;50;75;100;125;150]

temperature =

25
```

Available for free at Connexions <http://legacy.cnx.org/content/col11371/1.9>
specific_heat = [.118; .120; .123; .125; .128; .131]

Specific heat at 30°C: specific_heatAt30 = 0.1184
Specific heat at 70°C: specific_heatAt70 = 0.1224
Specific heat at 145°C: specific_heatAt145 = 0.1304

Solution to Exercise 5.2.3 (p. 118)
MATLAB solution is as follows:

new_temperature = 25:5:150;
new_specific_heat = interp1(temperature, specific_heat, new_temperature);
[new_temperature', new_specific_heat']

Available for free at Connexions <http://legacy.cnx.org/content/col11371/1.9>
CHAPTER 5. INTERPOLATION

Solution to Exercise 5.2.4 (p. 118)

```matlab
gt time=[1 2 3 4 6 7 8 10 11 12];
gt tank_level=[1.5 1.7 2.3 2.9 2.6 2.5 2.3 2.0 1.8 1.3];

tank_level_at_5=interp1(time,tank_level,5)
tank_level_at_5 =
    2.7500

gt tank_level_at_9=interp1(time,tank_level,9)
```

Available for free at Connexions <http://legacy.cnx.org/content/col11371/1.9>
tank_level_at_9 =

2.1500
Chapter 6

Numerical Integration

6.1 Computing the Area Under a Curve

This chapter essentially deals with the problem of computing the area under a curve. First, we will employ a basic approach and form trapezoids under a curve. From these trapezoids, we can calculate the total area under a given curve. This method can be tedious and is prone to errors, so in

1This content is available online at <http://legacy.cnx.org/content/m41454/1.4/>.

Available for free at Connexions <http://legacy.cnx.org/content/col11371/1.9>
the second half of the chapter, we will utilize a built-in MATLAB function to carry out numerical integration.

6.1.1 A Basic Approach

There are various methods to calculating the area under a curve, for example, Rectangle Method\(^2\), Trapezoidal Rule\(^3\) and Simpson’s Rule\(^4\). The following procedure is a simplified method.

Consider the curve below:

![Figure 6.1: Numerical integration](image)

Each segment under the curve can be calculated as follows:

\[
\frac{1}{2} (y_0 + y_1) \Delta x + \frac{1}{2} (y_1 + y_2) \Delta x + \frac{1}{2} (y_2 + y_3) \Delta x
\]

(6.1)

Therefore, if we take the sum of the area of each trapezoid, given the limits, we calculate the total area under a curve. Consider the following example.

Example 6.1

Given the following data, plot an x-y graph and determine the area under a curve between x=3 and x=30

\(^2\)http://en.wikipedia.org/wiki/Rectangle_method
\(^3\)http://en.wikipedia.org/wiki/Trapezoidal_rule
\(^4\)http://en.wikipedia.org/wiki/Simpson%27s_rule

Available for free at Connexions <http://legacy.cnx.org/content/col11371/1.9>
First, let us enter the data set. For \(x \), issue the following command
\[x=[3,10,15,20,25,30]; \]
And for \(y \), \[y=[27,14.5,9.4,6.7,5.3,4.5]; \]
If you type in \([x',y']\), you will see the following tabulated result. Here we transpose row vectors with ’ and displaying them as columns:

\[
\text{ans =}
\begin{align*}
3.0000 & 27.0000 \\
10.0000 & 14.5000 \\
15.0000 & 9.4000 \\
20.0000 & 6.7000 \\
25.0000 & 5.3000 \\
30.0000 & 4.5000
\end{align*}
\]

Compare the data set above with the given information in the question (Table 6.1).

To plot the data type the following:

\[
\text{plot}(x,y),\text{title('Distance-Force Graph')},\text{xlabel('Distance[m]')},\text{ylabel('Force[N]')},\text{grid}
\]

The following figure is generated:
To compute dx for consecutive x values, we will use the index for each x value, see the given data in the question (Table 6.1):

$$dx = [x(2) - x(1), x(3) - x(2), x(4) - x(3), x(5) - x(4), x(6) - x(5)];$$

dy is computed by the following command:

$$dy = [0.5*(y(2) + y(1)), 0.5*(y(3) + y(2)), 0.5*(y(4) + y(3)), 0.5*(y(5) + y(4)), 0.5*(y(6) + y(5))].$$

dx and dy can be displayed with the following command: $[dx', dy']$. The result will look like this:

$$[dx', dy']$$

$$ans =$$

$$\begin{array}{cc}
7.0000 & 20.7500 \\
5.0000 & 11.9500 \\
5.0000 & 8.0500 \\
5.0000 & 6.0000 \\
5.0000 & 4.9000 \\
\end{array}$$

Figure 6.2: Distance-Force Graph
Our results so far are shown below

<table>
<thead>
<tr>
<th>x [m]</th>
<th>y [N]</th>
<th>dx [m]</th>
<th>dy [N]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>27.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>14.50</td>
<td>7.00</td>
<td>20.75</td>
</tr>
<tr>
<td>15</td>
<td>9.40</td>
<td>5.00</td>
<td>11.95</td>
</tr>
<tr>
<td>20</td>
<td>6.70</td>
<td>5.00</td>
<td>8.05</td>
</tr>
<tr>
<td>25</td>
<td>5.30</td>
<td>5.00</td>
<td>6.00</td>
</tr>
<tr>
<td>30</td>
<td>4.50</td>
<td>5.00</td>
<td>4.90</td>
</tr>
</tbody>
</table>

Table 6.2: x, y and corresponding differential elements

If we multiply dx by dy, we find da for each element under the curve. The differential area \(da=dx*dy \), can be computed using the 'term by term multiplication' technique in MATLAB as follows:

\[
da=dx.*dy
\]

\[
da =
\]

\[
145.2500 \\ 59.7500 \\ 40.2500 \\ 30.0000 \\ 24.5000
\]

Each value above represents an element under the curve or the area of trapezoid. By taking the sum of array elements, we find the total area under the curve.

\[
sum(da)
\]

\[
ans =
\]

\[
299.7500
\]

The following (Table 6.3) illustrates all the steps and results of our MATLAB computation.

<table>
<thead>
<tr>
<th>x [m]</th>
<th>y [N]</th>
<th>dx [m]</th>
<th>dy [N]</th>
<th>dA [Nm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>27.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>14.50</td>
<td>7.00</td>
<td>20.75</td>
<td>145.25</td>
</tr>
<tr>
<td>15</td>
<td>9.40</td>
<td>5.00</td>
<td>11.95</td>
<td>59.75</td>
</tr>
<tr>
<td>20</td>
<td>6.70</td>
<td>5.00</td>
<td>8.05</td>
<td>40.25</td>
</tr>
<tr>
<td>25</td>
<td>5.30</td>
<td>5.00</td>
<td>6.00</td>
<td>30.00</td>
</tr>
<tr>
<td>30</td>
<td>4.50</td>
<td>5.00</td>
<td>4.90</td>
<td>24.50</td>
</tr>
</tbody>
</table>

299.75

Available for free at Connexions <http://legacy.cnx.org/content/col11371/1.9>
6.1.2 The Trapezoidal Rule

Sometimes it is rather convenient to use a numerical approach to solve a definite integral. The trapezoid rule allows us to approximate a definite integral using trapezoids.

6.1.2.1 The \texttt{trapz} Command

\[Z = \text{trapz}(Y) \] computes an approximation of the integral of \(Y \) using the trapezoidal method.

Now, let us see a typical problem.

\textbf{Example 6.2}

Given \[\int_{2}^{5} x^2 \, dx \], an analytical solution would produce 39. Use \texttt{trapz} command and solve it

1. Initialize variable \(x \) as a row vector, from 2 with increments of 0.1 to 5: \(x=2:.1:5; \)
2. Declare variable \(y \) as \(y=x^2; \). Note the following error prompt: \texttt{??? Error using == mpower Inputs must be a scalar and a square matrix.} This is because \(x \) is a vector quantity and MATLAB is expecting a scalar input for \(y \). Because of that, we need to compute \(y \) as a vector and to do that we will use the dot operator as follows: \(y=x.^2; \). This tells MATLAB to create vector \(y \) by taking each \(x \) value and raising its power to 2.
3. Now we can issue the following command to calculate the first area, the output will be as follows:

\[\texttt{area1=trapz(x,y)} \]

\[\texttt{area1 =} \]

\[39.0050 \]

Notice that this numerical value is slightly off. So let us increase the number of increments and calculate the area again:

\[x=2:.01:5; \]
\[y=x.^2; \]
\[\texttt{area2=trapz(x,y)} \]

\[\texttt{area2 =} \]

\[39.0001 \]
Yet another increase in the number of increments:

\[
x = 2:.001:5;
\]
\[
y = x.^2;
\]
\[
area3 = \text{trapz}(x,y)
\]
\[
area3 = 39.0000
\]

Example 6.3

Determine the value of the following integral:

\[
\int_{0}^{\pi} \sin(x) \, dx
\]

1. Initialize variable \(x\) as a row vector, from 0 with increments of \(\pi/100\) to \(\pi\):
 \[
x = 0: \pi/100: \pi;
\]
2. Declare variable \(y\) as \(y = \sin(x)\);
3. Issue the following command to calculate the first area, the output will be as follows:

\[
area1 = \text{trapz}(x,y)
\]
\[
area1 = 1.9998
\]

let us increase the increments as above:

\[
x = 0: \pi/1000: \pi;
\]
\[
y = \sin(x);
\]
\[
area2 = \text{trapz}(x,y)
\]
\[
area2 = 2.0000
\]

Example 6.4

A gas expands according to the law, \(PV^{1.4} = c\). Initially, the pressure is 100 kPa when the volume is 1 m\(^3\). Write a script to compute the work done by the gas in expanding to three times its original volume\(^5\).

Available for free at Connexions <http://legacy.cnx.org/content/col11371/1.9>
Recall that PV diagrams can be used to estimate the net work performed by a thermodynamic cycle, see Wikipedia\(^6\) or we can use definite integral to compute the work done (WD) as follows:

\[
WD = \int pdv
\]

(6.2)

If we rearrange the expression pressure as a function of volume, we get:

\[
P = \frac{c}{V^{1.4}}
\]

(6.3)

By considering the initial state, we can determine the value of c:

\[
c = 100 \times 1^{1.4}
\]

(6.4)

\[
c = 100
\]

From the equation (6.3) and the equation (6.4) above, we can write:

\[
P = \frac{100}{V^{1.4}}
\]

(6.5)

By inserting P (6.5) in WD (6.2), we get:

\[
WD = \int_1^3 \frac{100}{v^{1.4}}dv
\]

(6.6)

For MATLAB solution, we will consider P as a function of V (6.5) and WD (6.6). Now, let us apply the three-step approach we have used earlier:

1. Initialize variable volume as a row vector, from 1 with increments of 0.001 to 3:

 \[
v = \text{1:0.001:3;}
 \]

2. Declare variable pressure as

 \[
p = 100./v.^{1.4};
 \]

3. Use the \(\text{trapz}\) function to calculate the work done, the output will be as follows:

\[
\text{WorkDone} = \text{trapz(v,p)}
\]

\[
\text{WorkDone} = 88.9015
\]

These steps can be combined in an m-file as follows:

\(^6\)http://en.wikipedia.org/wiki/Pressure_volume_diagram#Thermodynamics

Available for free at Connexions <http://legacy.cnx.org/content/col11371/1.9>
clc
disp('A gas expands according to the law, pv^1.4=C')
disp('Initial pressure is 100 kPa when the volume is 1 m3')
disp('Compute the work done by the gas in expanding')
disp('To three times its original volume')
disp('') % Display blank line
v=1:.001:3; % Creating a row vector for volume, v
p=100./(v.^1.4); % Computing pressure for volume
WorkDone=trapz(v,p) % Integrating p*dv over 1 to 3 cubic meters

Example 6.5
A body moves from rest under the action of a direct force given by \(F = \frac{15}{x+3} \) where \(x \) is the distance in meters from the starting point. Write a script to compute the total work done in moving a distance 10 m.

Recall that the general definition of mechanical work is given by the following integral, see Wikipedia:

\[
WD = \int F \, dx
\]

(6.7)

Therefore we can write:

\[
WD = \int_{0}^{10} \frac{15}{x+3} \, dx
\]

(6.8)

Applying the steps we followed in the previous examples, we write:

clc
disp('A body moves from rest under the action of a direct force given')
disp('by F=15/(x+3) where x is the distance in meters')
disp('From the starting point.')
disp('Compute the total work done in moving a distance 10 m.')
disp('') % Display blank line
x=0:.001:10; % Creating a row vector for distance, x
F=15./(x+3); % Computing Force for x
WorkDone=trapz(x,F) % Integrating F*dx over 0 to 10 meters.

The output of the above code is:

A body moves from rest under the action of a direct force given by \(F = \frac{15}{x+3} \) where \(x \) is the distance in meters
From the starting point.
Compute the total work done in moving a distance 10 m.

\(^8\) http://en.wikipedia.org/wiki/Work_%28physics%29#Force_and_displacement

Available for free at Connexions <http://legacy.cnx.org/content/col11371/1.9>
6.1.3 Summary of Key Points

1. In its simplest form, numerical integration involves calculating the areas of segments that make up the area under a curve,
2. MATLAB has built-in functions to perform numerical integration,
3. \(Z = \text{trapz}(Y)\) computes an approximation of the integral of \(Y\) using the trapezoidal method.

6.2 Problem Set\(^9\)

Exercise 6.2.1 \hfill (Solution on p. 136.)
Let the function \(y\) defined by \(y = \cos(x)\). Plot this function over the interval \([-\pi, \pi]\).
Use numerical integration techniques to estimate the integral of \(y\) over \([0, \pi/2]\) using increments of \(\pi/10\) and \(\pi/1000\).

Exercise 6.2.2 \hfill (Solution on p. 136.)
Let the function \(y\) defined by \(y = 0.04x^2 - 2.13x + 32.58\). Plot this function over the interval \([3, 30]\).
Use numerical integration techniques to estimate the integral of \(y\) over \([3, 30]\).

Exercise 6.2.3 \hfill (Solution on p. 137.)
A 2000-liter tank is full of lube oil. It is known that if lube oil is drained from the tank, the mass flow rate will decrease from the maximum when the tank level is at the highest.
The following data were collected when the tank was drained.

\(^9\)This content is available online at <http://legacy.cnx.org/content/m41541/1.8/>.
<table>
<thead>
<tr>
<th>Time [min]</th>
<th>Mass Flow [kg/min]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>50.00</td>
</tr>
<tr>
<td>5</td>
<td>48.25</td>
</tr>
<tr>
<td>10</td>
<td>46.00</td>
</tr>
<tr>
<td>15</td>
<td>42.50</td>
</tr>
<tr>
<td>20</td>
<td>37.50</td>
</tr>
<tr>
<td>25</td>
<td>30.50</td>
</tr>
<tr>
<td>30</td>
<td>19.00</td>
</tr>
<tr>
<td>35</td>
<td>9.00</td>
</tr>
</tbody>
</table>

Table 6.4: Data

Write a script to estimate the amount of oil drained in 35 minutes.

Exercise 6.2.4
(Solution on p. 138.)
A gas is expanded in an engine cylinder, following the law $PV^{1.3}=c$. The initial pressure is 2550 kPa and the final pressure is 210 kPa. If the volume at the end of expansion is 0.75 m3, compute the work done by the gas.

Exercise 6.2.5
(Solution on p. 138.)
A force F acting on a body at a distance s from a fixed point is given by $F = 3s + \frac{1}{s^2}$. Write a script to compute the work done when the body moves from the position where $s=1$ to that where $s=10$.

Exercise 6.2.6
(Solution on p. 139.)
The pressure p and volume v of a given mass of gas are connected by the relation \[
\left(p + \frac{a}{v^2} \right) (v - b) = k
\]
where a, b and k are constants. Express p in terms of v, and write a script to compute the work done by the gas in expanding from an initial volume to a final volume.

Test your solution with the following input:
\[
a: 0.01
b: 0.001
\]
The initial pressure [kPa]: 100
The initial volume [m3]: 1
The final volume [m3]: 2

10 *Applied Heat for Engineers* by W. Embleton and L. Jackson, Thomas Reed Publications. ©1999, (p. 80)

Solutions to Exercises in Chapter 6

Solution to Exercise 6.2.1 (p. 134)

1. Plotting:

 \[
 \begin{align*}
 x &= -\pi: \pi/100: \pi; \\
 y &= \cos(x); \\
 \text{plot}(x, y), \text{title}('Graph of } y=\cos(x)'), \text{xlabel('x'), ylabel('y'), grid}
 \end{align*}
 \]

2. Area calculation 1:

 \[
 \begin{align*}
 &\gg x=0: \pi/10: \pi/2; \\
 &\gg y=\cos(x); \\
 &\gg \text{area1=trapz}(x, y)
 \end{align*}
 \]

 \[
 \text{area1} = 0.9918
 \]

3. Area calculation 2:

 \[
 \begin{align*}
 &\gg x=-\pi: \pi/1000: \pi/2; \\
 &\gg y=\cos(x); \\
 &\gg \text{area2=trapz}(x, y)
 \end{align*}
 \]

 \[
 \text{area2} = 1.0000
 \]

Solution to Exercise 6.2.2 (p. 134)

1. Plotting:

 \[
 \begin{align*}
 &\gg x=3:.1:30; \\
 &\gg y=0.04*(x.^2)-2.13.*x+32.58; \\
 &\gg \text{plot}(x, y), \text{title('Graph of ... y=.04*}x^2-2.13*x+32.58'), \text{xlabel('x'), ylabel('y'), grid}
 \end{align*}
 \]

2. Area calculation:

 \[
 \begin{align*}
 &\gg \text{area=trapz}(x, y)
 \end{align*}
 \]

 \[
 \text{area} = 290.3868
 \]
Solution to Exercise 6.2.3 (p. 134)

```matlab
clc
t=linspace(0,35,8) % Data entry for time [min]
m=[50 48.25 46 42.5 37.5 30.5 19 9] % Data entry for mass flow [kg/min]
% Calculate time intervals
dt=[t(2)-t(1),t(3)-t(2),t(4)-t(3),...
t(5)-t(4),t(6)-t(5),t(7)-t(6),t(8)-t(7)]
% Calculate mass out
dm=[0.5*(m(2)+m(1)),0.5*(m(3)+m(2)),0.5*(m(4)+m(3)),0.5*(m(5)+...
\  m(4)),0.5*(m(6)+m(5)),0.5*(m(7)+m(6)),0.5*(m(8)+m(7))]
% Calculate differential areas
da=dt.*dm;
% Tabulate time and mass flow
[t',m']
% Tabulate time intervals, mass out and differential areas
[dt',dm',da']
% Calculate the amount of oil drained [kg] in 35 minutes
Oil_Drained=sum(da)

The output is:

ans =

0 50.0000
5.0000 48.2500
10.0000 46.0000
15.0000 42.5000
20.0000 37.5000
25.0000 30.5000
30.0000 19.0000
35.0000 9.0000

ans =

5.0000 49.1250 245.6250
5.0000 47.1250 235.6250
5.0000 44.2500 221.2500
5.0000 40.0000 200.0000
5.0000 34.0000 170.0000
5.0000 24.7500 123.7500

Available for free at Connexions <http://legacy.cnx.org/content/col11371/1.9>
Solution to Exercise 6.2.4 (p. 135)

clc
disp('A gas is expanded in an engine cylinder, following the law PV^{1.3}=c')
disp('The initial pressure is 2550 kPa and the final pressure is 210 kPa.')
disp('If the volume at the end of expansion is 0.75 m3,')
disp('Compute the work done by the gas.')
disp(' ') % Display blank line
n=1.3;
P_i=2550; % Initial pressure
P_f=210; % Final pressure
V_f=.75; % Final volume
V_i=(P_f*(V_f^n)/P_i)^(1/n); % Initial volume
c=P_f*V_f^n;
v=V_i:.001:V_f; % Creating a row vector for volume, v
p=c./v.^n; % Computing pressure for volume
WorkDone=trapz(v,p) % Integrating p*dv

The output is:

A gas is expanded in an engine cylinder, following the law PV^{1.3}=c
The initial pressure is 2550 kPa and the final pressure is 210 kPa.
If the volume at the end of expansion is 0.75 m3,
Compute the work done by the gas.

WorkDone =

409.0666

Solution to Exercise 6.2.5 (p. 135)

clc
disp('A force F acting on a body at a distance s from a fixed point is given by')

Available for free at Connexions <http://legacy.cnx.org/content/col11371/1.9>
disp('F=3*s+(1/(s^2)) where s is the distance in meters')
disp('Compute the total work done in moving')
disp('From the position where s=1 to that where s=10.')
disp('') % Display blank line
s=1:.001:10; % Creating a row vector for distance, s
F=3.*s+(1./(s.^2)); % Computing Force for s
WorkDone=trapz(s,F) % Integrating F*ds over 1 to 10 meters.

The output is:

A force F acting on a body at a distance s from a fixed point is given by
F=3*s+(1/(s^2)) where s is the distance in meters
Compute the total work done in moving
From the position where s=1 to that where s=10.

WorkDone =

149.4000

Solution to Exercise 6.2.6 (p. 135)

clear % Clear screen
disp('This script computes the work done by')
disp('The gas in expanding from volume v1 to v2')
disp('') % Display blank line
a=input('Enter the constant a: ');
b=input('Enter the constant b: ');
p_i=input('Enter the initial pressure [kPa]: ');
v_i=input('Enter the initial volume [m^3]: ');
v_f=input('Enter the final volume [m^3]: ');
k=(p_i+(a/(v_i^2))*(v_i-b)); % Calculating constant k
v=v_i:.001:v_f; % Creating a row vector for volume
p=(k./(v-b))-(a./(v.^2)); % Computing pressure for volume
WorkDone=trapz(v,p); % Integrating p*dv
disp('') % Display blank line
str = ['The work done by the gas in expanding from ', num2str(v_i),' m^3 to ', num2str(v_f), ' m^3 is ', num2str(WorkDone), ' kW.'];
disp(str);

The output is:

This script computes the work done by
The gas in expanding from volume v1 to v2

Available for free at Connexions <http://legacy.cnx.org/content/col11371/1.9>
Enter the constant a: .01
Enter the constant b: .001
Enter the initial pressure [kPa]: 100
Enter the initial volume [m³]: 1
Enter the final volume [m³]: 2

The work done by the gas in expanding from 1 m³ to 2 m³ is 69.3667 kW.
Chapter 7

Regression Analysis

7.1 Regression Analysis¹

¹This content is available online at <http://legacy.cnx.org/content/m41448/1.3/>.

Available for free at Connexions <http://legacy.cnx.org/content/col11371/1.9>
7.1.1 What is Regression Analysis?

Suppose we calculate some variable of interest, $y$, as a function of some other variable $x$. We call $y$ the dependent variable and $x$ the independent variable. For example, consider the data set below, taken from a simple experiment involving a vehicle, its velocity versus time is tabulated. In this case, velocity is a function of time, thus velocity is the dependent variable and the time is the independent variable.

<table>
<thead>
<tr>
<th>Time [s]</th>
<th>Velocity [m/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>10</td>
<td>39</td>
</tr>
<tr>
<td>20</td>
<td>67</td>
</tr>
<tr>
<td>30</td>
<td>89</td>
</tr>
<tr>
<td>40</td>
<td>111</td>
</tr>
<tr>
<td>50</td>
<td>134</td>
</tr>
<tr>
<td>60</td>
<td>164</td>
</tr>
<tr>
<td>70</td>
<td>180</td>
</tr>
<tr>
<td>80</td>
<td>200</td>
</tr>
</tbody>
</table>

Table 7.1: Vehicle velocity versus time.

In its simplest form regression analysis involves fitting the best straight line relationship to explain how the variation in a dependent variable, $y$, depends on the variation in an independent variable, $x$. In our example above, once the relationship (in this case a linear relationship) has been estimated we can produce a linear equation in the following form:

$$y = mx + n$$ \hspace{1cm} (7.1)

And once an analytic equation such as the one above has been determined, dependent variables at intermediate independent values can be computed.

7.1.2 Performing Linear Regression

Regression analysis with MATLAB is easy. The MATLAB Basic Fitting GUI allows us to interactively to do "curve fitting" which is a method to arrive at the best "straight line" fit for linear equations or the best curve fit for a polynomial up to the tenth degree. The procedure to perform a curve fitting with MATLAB is as follows:

1. Input the variables,
2. Plot the data,
3. Initialize the Basic Fitting GUI,
4. Select the desired regression analysis parameters.

**Example 7.1**
Using the data set above, determine the relationship between velocity and time.

First, let us input the variables (Workspace > New variable) as shown in the following figures.

![Image](https://example.com/image.png)

**Figure 7.1:** A new variable is created in the Workspace.
Figure 7.2: New variables are entered in the Variable Editor.

Second, we will plot the data by typing in `plot(time,velocity)` at the MATLAB prompt. The following plot is generated, select Tools > Basic Fitting:
Figure 7.3: A plot is generated in Figure 1. The Basic Fitting tool can be initialized from Tools > Basic Fitting.

In the "Basic Fitting" window, select "linear" and "Show equations". The best fitting linear line along with the corresponding equation are displayed on the plot:
Now let us do another curve fitting and obtain an equation for the function. Using that equation, we can evaluate the function at a desired value with `polyval`.

**Example 7.2**

The following is a collection of data for an iron-constantan thermocouple (data available for download\(^2\)). \(^3\)

---

\(^2\)See the file at <http://legacy.cnx.org/content/m41448/latest/Chp7_Example2.zip>

<table>
<thead>
<tr>
<th>Temperature [C]</th>
<th>Voltage [mV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>2.6</td>
</tr>
<tr>
<td>100</td>
<td>6.7</td>
</tr>
<tr>
<td>150</td>
<td>8.8</td>
</tr>
<tr>
<td>200</td>
<td>11.2</td>
</tr>
<tr>
<td>300</td>
<td>17.0</td>
</tr>
<tr>
<td>400</td>
<td>22.5</td>
</tr>
<tr>
<td>500</td>
<td>26</td>
</tr>
<tr>
<td>600</td>
<td>32.5</td>
</tr>
<tr>
<td>700</td>
<td>37.7</td>
</tr>
<tr>
<td>800</td>
<td>41</td>
</tr>
<tr>
<td>900</td>
<td>48</td>
</tr>
<tr>
<td>1000</td>
<td>55.2</td>
</tr>
</tbody>
</table>

**Table 7.2: Temperature [C] vs Voltage [mV]**

a. Plot a graph with Temperature as the independent variable.
b. Determine the equation of the relationship using the Basic Fitting tools.
c. Estimate the Voltage that corresponds to a Temperature of 650 C and 1150 C.

We will input the variables first:

Temp=[50;100;150;200;300;400;500;600;700;800;900;1000]

Voltage=[2.6;6.7;8.8;11.2;17;22.5;36;32.5;37.7;41;48;55.2]

To plot the graph, type in:

plot(Temp,Voltage)

We can now use the Plot Tools and Basic Fitting settings and determine the equation:
Figure 7.5: Basic Fitting window is used to select the desired regression analysis parameters.

By clicking the right arrow twice at the bottom right corner on the Basic Fitting window, we can evaluate the function at a desired value. See the figure below which illustrates this process for the temperature value 1150°C.
Figure 7.6: Estimating the Voltage that corresponds to a Temperature of 1150 C.

Now let us check our answer with a technique we learned earlier. As displayed on the plot, we have obtained the following equation: \( y = 0.053x + 1.4 \) This equation can be entered as polynomial and evaluated at 650 and 1150 as follows:

\[
\gg p=[0.053,1.4]
\]

\[
p =
\]

\[
0.0530 \quad 1.4000
\]

\[
\gg \text{polyval}(p,650)
\]

\[
\text{ans} =
\]

\[
35.8500
\]
\[
\text{polyval}(p, 1150) \\quad \text{ans} = 62.3500
\]

7.1.3 Summary of Key Points

1. Linear regression involves fitting the best straight line relationship to explain how the variation in a dependent variable, \( y \), depends on the variation in an independent variable, \( x \).
2. Basic Fitting GUI allows us to interactively perform curve fitting.
3. Some of the plot fits available are linear, quadratic and cubic functions.
4. Basic Fitting GUI can evaluate functions at given points.

7.2 Problem Set

Exercise 7.2.1  
(Solution on p. 152.)

Using the following experimental values, plot a distance-time graph and determine the equation, relating the distance and time for a moving object.

<table>
<thead>
<tr>
<th>Distance [m]</th>
<th>Time [s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24</td>
<td>5</td>
</tr>
<tr>
<td>48</td>
<td>10</td>
</tr>
<tr>
<td>72</td>
<td>15</td>
</tr>
<tr>
<td>96</td>
<td>20</td>
</tr>
</tbody>
</table>

Table 7.3: Experimental data.

Exercise 7.2.2  
(Solution on p. 152.)

Using the data set below, determine the relationship between temperature and internal energy.

\(^4\)This content is available online at <http://legacy.cnx.org/content/m48021/1.1/>.

\(^5\)Engineering Science by E. Hughes and C. Hughes, Longman ©1994, (p. 375)
**Table 7.4: An extract from Steam Tables**

<table>
<thead>
<tr>
<th>Temperature [°C]</th>
<th>Internal Energy [kJ/kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>2506.7</td>
</tr>
<tr>
<td>150</td>
<td>2582.8</td>
</tr>
<tr>
<td>200</td>
<td>2658.1</td>
</tr>
<tr>
<td>250</td>
<td>2733.7</td>
</tr>
<tr>
<td>300</td>
<td>2810.4</td>
</tr>
<tr>
<td>400</td>
<td>2967.9</td>
</tr>
<tr>
<td>500</td>
<td>3131.6</td>
</tr>
</tbody>
</table>

**Exercise 7.2.3**  
(Solution on p. 153.)

Using the following experimental values, plot a velocity-time graph and determine the equation, relating the velocity and time for a moving object.

<table>
<thead>
<tr>
<th>Velocity [m/s]</th>
<th>Time [s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>142</td>
<td>5</td>
</tr>
<tr>
<td>512</td>
<td>10</td>
</tr>
<tr>
<td>1122</td>
<td>15</td>
</tr>
<tr>
<td>1972</td>
<td>20</td>
</tr>
</tbody>
</table>

**Table 7.5: Experimental data.**

---

^6*Engineering Science* by E. Hughes and C. Hughes, Longman ©1994, (p. 375)
CHAPTER 7. REGRESSION ANALYSIS

Solutions to Exercises in Chapter 7

Solution to Exercise 7.2.1 (p. 150)
Data can be entered as follows:

```matlab
distance=[0 24 48 72 96];
time=[0 5 10 15 20];
```

we can now plot the data by typing in

```matlab
plot(time,distance);title('Distance-Time Graph');xlabel('time');ylabel('distance');
```

As shown above, the relationship between distance and time is:

\[ y = 4.8x - 1.7 \times 10^{-14} \]

or

Distance = 4.8Time - 1.7 \times 10^{-14}

Solution to Exercise 7.2.2 (p. 150)
Data can be entered as follows:

```matlab
temperature = [100, 150, 200, 250, 300, 400, 500];
energy = [2506.7, 2582.8, 2658.1, 2733.7, 2810.4, 2967.9, 3131.6];
```

we can now plot the data by typing in

```matlab
plot(temperature,energy);title('temperature vs. energy');xlabel('temperature');ylabel('energy');
```

Available for free at Connexions <http://legacy.cnx.org/content/col11371/1.9>
at the MATLAB prompt. The following plot is generated, select Tools > Basic Fitting:

As shown above, the relationship between temperature and internal energy is:

\[ y = 1.6x + 2347.2 \]
or

internal energy = 1.6temperature + 2347.2

**Solution to Exercise 7.2.3 (p. 151)**

Data can be entered as follows:

```matlab
velocity=[12 142 512 1122 1972];
time=[0 5 10 15 20];
```

we can now plot the data by typing in

```matlab
plot(time,velocity);title('Velocity-Time Graph');xlabel('time');ylabel('velocity');
```

at the MATLAB prompt. The following plot is generated, select Tools > Basic Fitting, notice that we are choosing the quadratic option this time:
As shown above, the relationship between velocity and time is:

\[ y = 4.8x^2 + 2x + 12 \]
Chapter 8

Publishing with MATLAB

8.1 Generating Reports with MATLAB

MATLAB includes an automatic report generator called publisher. The publisher publishes a script in several formats, including HTML, XML, MS Word and PowerPoint. The published file can contain the following:

1 This content is available online at <http://legacy.cnx.org/content/m41457/1.1/>.

Available for free at Connexions <http://legacy.cnx.org/content/col11371/1.9>
CHAPTER 8. PUBLISHING WITH MATLAB

- Commentary on the code,
- MATLAB code,
- Results of the executed code, including the Command Window output and figures created by the code.

8.1.1 The publish Function

The most basic syntax is `publish('file','format')` where the m-file is called and executed line by line then saved to a file in specified format. All published files are placed in the html directory although the published output might be a doc file.

8.1.2 Publishing with Editor

The publisher is easily accessible from the Editor toolbar and file menu:

![Figure 8.1: Publish button on the Editor toolbar](image1)

![Figure 8.2: Publish item on the Editor file menu.](image2)

Available for free at Connexions <http://legacy.cnx.org/content/col11371/1.9>
Example 8.1
Write a simple script and publish it in an html file.

Select File > New > Script to create an m-file. Once the editor is opened, type in the following code:

\[
\begin{align*}
x &= [0:6]; & \quad \text{% Create a row vector} \\
y &= 1.6*x; & \quad \text{% Compute y as a function of x} \\
[x',y'] & \quad \text{% Transpose vectors x and y} \\
\text{plot}(x,y),\text{title('Graph of y=f(x)'),xlabel('x'),ylabel('f(x)'),grid} & \quad \text{% Plot a graph}
\end{align*}
\]

Save the script as publishing.m and select File > Publish. An HTML file is generated as shown in the figure below:
8.1.3 The Double Percentage % Sign

The scripts sometimes can be very long and their readability might be reduced. To improve the publishing result, sections are introduced by adding descriptive lines to the script preceded by `%%`. Consider the following example.
Example 8.2
Edit the script created in the example above to look like the code below:

```matlab
%% This file creates vectors, displays results and plots an x-y graph
x = [0:6]; % Create a row vector
y = 1.6*x; % Compute y as a function of x
%% Tabulated data
[x',y'] % Transpose vectors x and y
%% Graph of y=f(x)
plot(x,y),title('Graph of y=f(x)'),xlabel('x'),ylabel('f(x)'),grid % Plot a graph
```

Save the script, a new HTML file is generated as shown in the figure below:
CHAPTER 8. PUBLISHING WITH MATLAB

Figure 8.4: An html file with sections

8.1.4 Summary of Key Points

1. MATLAB can generate reports containing commentary on the code, MATLAB code and the results of the executed code,

Available for free at Connexions <http://legacy.cnx.org/content/col11371/1.9>
2. The publisher generates a script in several formats, including HTML, XML, MS Word and PowerPoint.
3. The Double Percentage %% can be used to create hyper-linked sections.

8.2 Problem Set²

Exercise 8.2.1  
(Solution on p. 162.)
Write a script to plot function \( y = \frac{\sin(x)}{x} \) for \( \frac{\pi}{100} \leq x \leq 10\pi \) using increments of \( \frac{\pi}{100} \). Publish your m-file to html.

Exercise 8.2.2  
(Solution on p. 163.)
A gas is expanded in an engine cylinder, following the law \( PV^{1.3} = c \). The initial pressure is 2550 kPa and the final pressure is 210 kPa. If the volume at the end of expansion is 0.75 m³, write a script to compute the work done by the gas and publish your solution to an html file. This is the same problem as this Problem you have solved before. (Exercise 6.2.4)

Exercise 8.2.3  
(Solution on p. 165.)
A force \( F \) acting on a body at a distance \( s \) from a fixed point is given by \( F = 3s + \frac{1}{s^2} \). Write a script to compute the work done when the body moves from the position where \( s=1 \) to that where \( s=10 \) and publish your solution to an html file. Include a table of contents in the output file. This is the same problem as this Problem you have solved before. (Problem 6.2.5)

²This content is available online at <http://legacy.cnx.org/content/m48023/1.1/>.

Available for free at Connexions <http://legacy.cnx.org/content/col11371/1.9>
Solutions to Exercises in Chapter 8

Solution to Exercise 8.2.1 (p. 161)
The m-file content:

% This script plots a graph of y=sin(x)/x
clc % Clear screen
x = pi/100:pi/100:10*pi; % Create a row vector
y = sin(x)./x; % Calculate y as function of x
plot(x,y),title('Graph of y=sin(x)/x'),xlabel('x'),ylabel('y'),grid

The html output:
Solution to Exercise 8.2.2 (p. 161)
The m-file content:

```matlab
clc

disp('A gas is expanded in an engine cylinder, following the law PV^{1.3}=c')
disp('The initial pressure is 2550 kPa and the final pressure is 210 kPa.')
disp('If the volume at the end of expansion is 0.75 m3,')
```

Available for free at Connexions <http://legacy.cnx.org/content/col11371/1.9>
disp('Compute the work done by the gas.')
disp(' ') % Display blank line
n=1.3;
P_i=2550; % Initial pressure
P_f=210; % Final pressure
V_f=.75; % Final volume
V_i=(P_f*(V_f^n)/P_i)^(1/n); % Initial volume
c=P_f*V_f^n;
v=V_i:.001:V_f; % Creating a row vector for volume, v
p=c./(v.^n); % Computing pressure for volume
WorkDone=trapz(v,p) % Integrating p*dv

The html output:
Figure 8.6: The published html file.

Solution to Exercise 8.2.3 (p. 161)
The m-file content:

```matlab
%% Work done
% This script computes the work done on an object
clc
disp('A force F acting on a body at a distance s from a fixed point is given by')
disp('F=3*s+(1/(s^2)) where s is the distance in meters')
```

Available for free at Connexions <http://legacy.cnx.org/content/col11371/1.9>
disp('Compute the total work done in moving')
disp('From the position where s=1 to that where s=10.')
disp(' ') % Display blank line

%% Create a row vector for distance, s
s=1:.001:10;
%% Compute Force for s
F=3.*s+(1./(s.^2)); % Computing Force for s
%% Integrating F*ds over 1 to 10 meters.
WorkDone=trapz(s,F)

The html output:
Work done

This script computes the work done on an object.

```
clear
disp('A force F acting on a body at a distance s from a fixed point is given by')
disp(['F=S*s+(1/(s.^2)) where s is the distance in meters'])
disp('Compute the total work done in moving')
disp('From the position where s=1 to that where s=10.')
disp('')
 % Display blank line

A force F acting on a body at a distance s from a fixed point is given by
F=S*s+(1/(s.^2)) where s is the distance in meters
Compute the total work done in moving
From the position where s=1 to that where s=10.

Create a row vector for distance, s

s=1:.001:10;

Compute Force for s

F=3*s+.1/(s.^2); % Computing Force for s

Integrating F^ds over 1 to 10 meters.

WorkDone=trapz(s,F)

WorkDone =
 145.4000
```

Figure 8.7: The published html file.

Available for free at Connexions <http://legacy.cnx.org/content/col11371/1.9>
Chapter 9

Postscript¹

Dear reader:
Although I began working on this book awhile ago (c. September 2010), the current iteration of
the manuscript is still far from being complete and I anticipate it will take a few years to bring
it to a decent state. The text needs proof reading, extensive editing and more proof reading. I
would therefore appreciate readers’ suggestions, comments and sincere criticism emailed me at
sbeyenir at my dot bcit dot ca.
Thank you,
Serhat Beyenir

¹This content is available online at <http://legacy.cnx.org/content/m41658/1.1/>.
Available for free at Connexions <http://legacy.cnx.org/content/col11371/1.9>
# Index of Keywords and Terms

**Keywords** are listed by the section with that keyword (page numbers are in parentheses). Keywords do not necessarily appear in the text of the page. They are merely associated with that section. *Ex.* apples, § 1.1(1) **Terms** are referenced by the page they appear on. *Ex.* apples, 1

<table>
<thead>
<tr>
<th>A</th>
<th>AppsAnywhere, § 1.1(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Arithmetic Operators, § 2.1(27)</td>
</tr>
<tr>
<td></td>
<td>Assignment of a Matrix, § 2.1(27)</td>
</tr>
<tr>
<td></td>
<td>Assignment of a Scalar, § 2.1(27)</td>
</tr>
<tr>
<td></td>
<td>Assignment of a Vector, § 2.1(27)</td>
</tr>
<tr>
<td>B</td>
<td>Boyle’s Law, § 3.2(73)</td>
</tr>
<tr>
<td>C</td>
<td>cd, § 1.1(5)</td>
</tr>
<tr>
<td></td>
<td>clc, § 1.1(5)</td>
</tr>
<tr>
<td></td>
<td>clear, § 1.1(5), § 1.2(19)</td>
</tr>
<tr>
<td></td>
<td>Command History, § 1.1(5)</td>
</tr>
<tr>
<td></td>
<td>Command Window, § 1.1(5)</td>
</tr>
<tr>
<td></td>
<td>Comments, § 2.1(27)</td>
</tr>
<tr>
<td></td>
<td>computer, § 1.1(5)</td>
</tr>
<tr>
<td></td>
<td>Creative Commons, § 4.1(87)</td>
</tr>
<tr>
<td></td>
<td>Current Folder, § 1.1(5)</td>
</tr>
<tr>
<td></td>
<td>Curve fitting, § 7.1(141)</td>
</tr>
<tr>
<td>D</td>
<td>diary function, § 4.1(87)</td>
</tr>
<tr>
<td></td>
<td>disp function, § 4.1(87)</td>
</tr>
<tr>
<td></td>
<td>Double percentage, § 8.1(155)</td>
</tr>
<tr>
<td>E</td>
<td>Elementary Math, § 1.2(19)</td>
</tr>
<tr>
<td></td>
<td>exit, § 1.1(5)</td>
</tr>
<tr>
<td></td>
<td>Exponential, § 1.2(19)</td>
</tr>
<tr>
<td>F</td>
<td>fclose function, § 4.1(87)</td>
</tr>
<tr>
<td></td>
<td>fopen function, § 4.1(87)</td>
</tr>
<tr>
<td></td>
<td>for loop, § 4.1(87)</td>
</tr>
<tr>
<td></td>
<td>format, § 1.2(19)</td>
</tr>
<tr>
<td></td>
<td>format Function, § 2.1(27)</td>
</tr>
<tr>
<td></td>
<td>fprintf function, § 4.1(87)</td>
</tr>
<tr>
<td></td>
<td>Function Browser, § 1.2(19)</td>
</tr>
<tr>
<td>G</td>
<td>Gas Law, § 6.2(134)</td>
</tr>
<tr>
<td></td>
<td>GNU General Public License, § 4.1(87)</td>
</tr>
<tr>
<td></td>
<td>Graphics, § 3.1(55)</td>
</tr>
<tr>
<td></td>
<td>guide, § (3)</td>
</tr>
<tr>
<td>H</td>
<td>HTML, § 8.1(155)</td>
</tr>
<tr>
<td>I</td>
<td>input function, § 4.1(87)</td>
</tr>
<tr>
<td></td>
<td>Integration, § 6.1(125)</td>
</tr>
<tr>
<td></td>
<td>interp1 function, § 5.1(113)</td>
</tr>
<tr>
<td></td>
<td>Interpolation, § 5.1(113)</td>
</tr>
<tr>
<td>K</td>
<td>Keyboard shortcuts, § 1.1(5)</td>
</tr>
<tr>
<td>L</td>
<td>Labeling Graphs, § 3.1(55)</td>
</tr>
<tr>
<td></td>
<td>Latex, § 8.1(155)</td>
</tr>
<tr>
<td></td>
<td>Linear Equations, § 2.1(27), § 2.2(46)</td>
</tr>
<tr>
<td></td>
<td>Linear regression, § 7.1(141)</td>
</tr>
<tr>
<td></td>
<td>loops, § 4.1(87)</td>
</tr>
<tr>
<td>M</td>
<td>m-file, § 4.1(87)</td>
</tr>
<tr>
<td></td>
<td>mass flow rate, § 6.2(134)</td>
</tr>
<tr>
<td></td>
<td>MATLAB Help, § 1.1(5)</td>
</tr>
<tr>
<td></td>
<td>Mechanical work, § 6.1(125)</td>
</tr>
<tr>
<td></td>
<td>MS Word, § 8.1(155)</td>
</tr>
<tr>
<td></td>
<td>Multiple Plots, § 3.1(55)</td>
</tr>
<tr>
<td>N</td>
<td>num2str function, § 4.1(87)</td>
</tr>
<tr>
<td>O</td>
<td>Operator Precedence, § 2.1(27)</td>
</tr>
<tr>
<td>P</td>
<td>Pascal’s Law, § 4.2(102)</td>
</tr>
<tr>
<td></td>
<td>plot, § 1.2(19)</td>
</tr>
</tbody>
</table>

Available for free at Connexions <http://legacy.cnx.org/content/col11371/1.9>
INDEX

Polynomials, § 2.1(27), § 2.2(46)
polyval Function, § 2.1(27)
Postscript, § 9(169)
PowerPoint, § 8.1(155)
Problem Set for Graphing with
MATLAB, § 3.2(73)
Problem Set for Interpolation with
MATLAB, § 5.2(117)
Problem Set for Introductory
Programming, § 4.2(102)
Problem Set for MATLAB Essentials,
§ 2.2(46)
Problem Set for Numerical Integration
with MATLAB, § 6.2(134)
Problem Set for Publishing with
MATLAB, § 8.2(161)
Problem Set for Regression Analysis
with MATLAB, § 7.2(150)
Problem Set for What is MATLAB?,
§ 1.2(19)
publish function, § 8.1(155)
Publishing, § 8.1(155)
PV diagrams, § 6.1(125)
pwd, § 1.1(5)
quit, § 1.1(5)

R Regression analysis, § 7.1(141)
roots, § 1.2(19)
roots Function, § 2.1(27)

S script, § 4.1(87)
specific heat, § 5.2(117)
Steam tables, § 5.1(113), § 5.2(117)
Strain, § 2.2(46), § 3.2(73), § 4.2(102)
Stress, § 2.2(46), § 3.2(73), § 4.2(102)
Superimposed Plots, § 3.1(55)

T Three-Dimensional Plots, § 3.1(55)
Trapezoidal Rule, § 6.1(125)
Two-Dimensional Plots, § 3.1(55)

U Unit conversion, § 4.2(102)

V Variables, § 2.1(27)
ver, § 1.1(5)

W while loop, § 4.1(87)
who, § 1.1(5)
whos, § 1.1(5)
Work done, § 6.1(125)
workspace, § 1.1(5), § 1.2(19)

X XML, § 8.1(155)

Available for free at Connexions <http://legacy.cnx.org/content/col11371/1.9>
Attributions

Collection: *A Brief Introduction to Engineering Computation with MATLAB*
Edited by: Serhat Beyenir
URL: http://legacy.cnx.org/content/col11371/1.9/
License: http://creativecommons.org/licenses/by/3.0/

Module: "Preface"
By: Serhat Beyenir
URL: http://legacy.cnx.org/content/m41458/1.6/
Pages: 1-2
Copyright: Serhat Beyenir
License: http://creativecommons.org/licenses/by/3.0/

Module: "Study Guide"
By: Serhat Beyenir
URL: http://legacy.cnx.org/content/m41459/1.2/
Pages: 3-4
Copyright: Serhat Beyenir
License: http://creativecommons.org/licenses/by/3.0/

Module: "What is MATLAB?"
By: Serhat Beyenir
URL: http://legacy.cnx.org/content/m41403/1.4/
Pages: 5-19
Copyright: Serhat Beyenir
License: http://creativecommons.org/licenses/by/4.0/

Module: "What is MATLAB? | Problem Set"
Used here as: "Problem Set"
By: Serhat Beyenir
URL: http://legacy.cnx.org/content/m41463/1.2/
Pages: 19-20
Copyright: Serhat Beyenir
License: http://creativecommons.org/licenses/by/3.0/

Module: "MATLAB Essentials"
Used here as: "Essentials"
By: Serhat Beyenir
URL: http://legacy.cnx.org/content/m41409/1.2/
Pages: 27-46
Copyright: Serhat Beyenir
License: http://creativecommons.org/licenses/by/3.0/

Available for free at Connexions <http://legacy.cnx.org/content/col11371/1.9>
A Brief Introduction to Engineering Computation with MATLAB
An Engineering Computation Primer.

About OpenStax-CNX
Rhaptos is a web-based collaborative publishing system for educational material.